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1 Why Statistics ?

1.1 Introduction

This is, in my opinion, quite a good time to work in research; there are lots of new

things continually being discovered as well as many new and powerful techniques (in the

laboratory, methodological improvements, detection, precision, etc). So, in esssence we are

continually developing lots of 'knowledge'. But all this comes at a price, and the price of

our greater knowledge is the increased complexity that goes hand in hand with our greater

knowledge of biological forces and processes. There are often many things that we do not

control or that we cannot control; this is where variability enters into our experiments.

As an analogy, in mathematics, 2 + 2 always equals 4, whereas in statistics 2 + 2 on

average equals 4, but sometimes it might equal 3, sometimes it might equal 5, more of

the time it will be closer to 4, so that on average it adds to 4, but not in any one particular

experiment.

With modern experimental techniques we often have the capacity to generate lots of

'data', which we have to analyse to try and �nd the underlying common average consistent

e�ect. This is where computers, computer programmes and statistical programmes come

in to play. Modern computers mean that we have lots of 'information' and lots of computer

'power' to do analyses. There is no need to do statistical analyses 'by hand'. This means

that much of the mechanical drudgery (and risk of errors) has been eliminated. However,

it has not removed the 'GIGO: Garbage In Garbage Out' factor. Neither has it removed

the potential for doing the wrong statistical analysis at lightening speed! We still need to

think about the statistical methods.

What statistical methods? What sort of data? Are we dealing with Normally dis-

tributed data (as known as Gaussian distribution, or the bell curve)? We will brie�y

mention Binomial/Multinomial and Poisson distributions.

It is assumed that you know Statistical Methods I (AEMA-310) and have at least an

introduction to matrices. As an aside there is a very good introduction to matrices with

an agricultural, biological orientation by Shayle Searle.
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What is the purpose of statistics? It is to describe and explain things, and to allow us

to summarize experiments and results and to indicate which results are likely to be real.

1.2 What is this course about and for whom?

This course is designed for graduate students who have already taken Statistical Methods

1 (or an equivalent) and who need to learn more about the statistical assumptions and

methods. It is intended to introduce you to SAS, entering data, running analyses, inter-

preting SAS output. It should get you started on understanding statistical notation so

that you can continue your statistical reading and education in your own �eld of research.

We will refer to various other texts and sources:

Steel, Torrie and Dickey

Searle - Matrix Algebra

SAS System for Linear Models

SAS System for Mixed Models

Analysis of Binary Data - Collett

Cochran and Cox - Experimental Design

SAS language manual

SAS/STAT manual

Lucas - Design and Analysis of Feeding Experiments with milking dairy cattle

My Web Site for Stats II

I cannot hope to cover everything, but you should have the basics and know what sort

of questions to ask, e.g. is this a Normal distribution, independence of the observation,

are there �xed e�ects and/or random e�ects, do we have repeated observations, etc?
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1.3 A brief review of matrices

1.4 Matrices STD Ch 12,13

This brief introduction to, and overview of, matrices is not supposed to be a complete

coverage of matrices. Neither is it simply a beginner's guide to matrices. Anybody who

knows nothing about matrices is refered to the excellent book by S.R.Searle:

- Matrix Algebra Useful for Statistics

- S.R. Searle

This introduction is more an aide-memoire to refresh your knowledge of matrices and

matrix operations: addition, subtraction, multiplication, inversion, etc.

Matrices are nothing miraculous, they are simply a convienient way of grouping sets of

similar equations.

Suppose that we have:

2x+ 6y = 10 (1)

4x+ 7y = 10 (2)

Can we solve for x and y? How?

If we multiple equation (1) by 2 we get

4x+ 12y = 20 (3)

If we subtract equation (3) from equation (2)

4x+ 12y = 20 (4)
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4x+ 7y = 10 (5)

Subtract:

0x+ 5y = 10 (6)

5y = 10 (7)

y = 2 (8)

Then substituting back into equation (1)

2x+ 6y = 10 (9)

2x+ 6(2) = 10 (10)

2x+ 12 = 10 (11)

2x = −2 (12)

x = −1 (13)

Thus solutions are x = −1 and y = 2.
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This is how we solved simultaneous equations in highschool, by repeatedly substituting

and solving for one variable (in this case y) and then back-substituting to solve for the

other(s) (x in this case).

We can also write the equation (1) and (2) using a matrix notation.

Equation (1) is 2× x+ 6× y = 10

In matrix format we would seperate out the x and y variables (unknowns):

[
2 6

]  x

y

 =
[
10

]

The �rst matrix is a matrix with 1 row and 2 columns, a 1×2 matrix (also a row

vector). The second matrix is a matrix with 2 rows and 1 column, a 2×1 matrix (also a

column vector). To be 'conformable' for matrix multiplication the number of columns of

the �rst matrix must equal the number of rows of the second matrix. In general if we have

2 matrices, Am×n (m rows and n columns) and Bn×p (n rows and p columns) then we can

write their product as Cm×p = Am×nBn×p, with Cij =
∑k=n

k=1 AikBkj. Note also that unlike

scalar multiplication, matrix multiplication is not commutative.

1.5 Addition and Subtraction of Matrices

To be 'conformable' for addition and/or subtraction 2 matrices must have the same di-

mension; that is to say that the two matrices must have the same number of rows and they

must also have the same number of columns. Thus if:

A =


2 6

4 7

0 1



and
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B =


1 0

6 −5

2 1



then

A+B =


2 6

4 7

0 1

+

1 0

6 −5

2 1



=


3 6

10 2

2 2



Note that the corresponding elements of the 2 matrices are added (or subtracted).

1.6 Multiplication of Matrices

To be 'conformable' for multiplication 2 matrices must have 'conformable' dimensions, as

noted previously. There is no division de�ned for matrices.

1.7 Matrix Inversion

If we take the matrix of coe�cients relating to x and y from our original problem of 2

simultaneous equations we have

A =

 2 6

4 7


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For scalar arithmetic we have multiplication and division, for example 2 ÷ 2 = 1. We

can look at this as 2/2, or alternatively as 2× 1
2
, where 1

2
is the reciprocal of 2, i.e. 2−1. For

matrices we use the 'Inverse' which is like a reciprocal in scalar arithmetic. The Inverse of

a matrix is another matrix, such that the product is the 'Identity' matrix, a matrix with

1's on the diagonal and 0's elsewhere.

The Identity matrix is analagous to the scalar 1; multiplying a matrix by the identity

matrix leaves it unchanged.

Our matrix

 2 6

4 7

, what is it's inverse?
The inverse will be such that 2 6

4 7

 e f

g h

 =

 1 0

0 1



We can write this inverse as: e f

g h

 =

 2 6

4 7

−1

How do we calculate the elements of this inverse (e, f, g and h)? For a general methodol-

ogy see Searle, Matrix Algebra Useful for Statistics, or any other introductory book about

matrices.

In this course we will use SAS to compute inverses of matrices; to do so by hand is

long, tedious and error-prone; computers are ideal for this task, leaving us to think about

our biological and statistical models. However, a 2 × 2 matrix is easy to invert and will

allow us to demonstrate solving simultaneous equations.

Let the 2× 2 matrix be a b

c d


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Then the inverse is

1

ad− bc

 d −b

−c a



 2 6

4 7

−1

=
1

2× 7− 4× 6

 7 −6

−4 2



=
1

14− 24

 7 −6

−4 2



=
1

−10

 7 −6

−4 2



=

 −0.7 0.6

0.4 −0.2



1.8 Solving Simultaneous Equations

If we return to our 2 simultaneous equations (1) and (2) and write them as matrices we

have: 2 6

4 7

 x

y

 =

 10

10



we can pre-multiply both sides by the inverse: −0.7 0.6

0.4 −0.2

 2 6

4 7

  x

y

 =

 −0.7 0.6

0.4 −0.2

 10

10


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N.B.

 −0.7 0.6

0.4 −0.2

  2 6

4 7

 =

 1 0

0 1



This gives 1 0

0 1

 x

y

 =

 −0.7 0.6

0.4 −0.2

 10

10

 (14)

Taking the left hand side of the above equation (14): 1 0

0 1

 x

y

 =

 x

y

 (15)

i.e. pre-multiplying by the identity matrix leaves the vector of x and y inchanged.

Looking at the right hand side of equation 14 we have −0.7 0.6

0.4 −0.2

 10

10

 =

 −1

2

 (16)

Thus, from 15 and 16 we have x

y

 =

 −1

2

 (17)

This solution is exactly the same as that which we obtained initially solving by hand.

For 2 simultaneous equations solving by hand is less complicated than using a matrix

inverse, but if we had 10, 20, or 30 or more simultaneous equations it would be much

easier to use a matrix approach and use a computer to solve the equations in the above

manner.

1.9 Rank

The column rank of a matrix is the number of linearly independent columns of the matrix.

If we can form a column as a linear function of some other columns then this column is

not linearly independent of the others.
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2 Regression - STD: Ch. 14

- equations in matrix form

- assumptions

- Normal Equations

- using SAS/IML to obtain estimates

- sums of squares, sampling variances and standard errors

- Analysis of Variance

- F-test, t-test and χ2 for parameters

- Partitioning the Sums of Squares for the Model (SSR)

- Testing several parameters simultaneously

- Con�dence Intervals

- Linear and Quadratic Regressions

- Predicted (�tted) Values and Sampling variances

- Non-linear regression and curve �tting
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3 Multiple Regression - STD: Ch. 14

3.1 Assumptions

- 1. The model is appropriate to the data

- 2. Homogeneity of variances

- 3. Independence of the observations

Simple Linear Regression

Review STD, Chapter 10, Linear Regression.

Review STD, Chapter 12, Matrix Notation.

Review STD, Chapter 13, Linear Regression in Matrix Notation.

Y = a+ bx+ e (18)

Multiple Regression

In a multiple regression context we can extend (18) to more than simply 1 single (simple)

regression coe�cient; in the example below we have 2 regression coe�cients:

Y = a+ b1X1 + b2X2 + e (19)

Re-write as

3.2 Linear Model

Y = b0 + b1X1 + b2X2 + e

thus

Y1 = b0 + b1X11 + b2X12 + e1

Y2 = b0 + b1X21 + b2X22 + e2

. . .

. . .

Yi = b0 + b1Xi1 + b2Xi2 + ei

. . .

. . .

Yn = b0+ b1Xn1 + b2Xn2 + en
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3.3 Parameters of the model

b0, b1, b2, σ2
e

- de�nitions of terms in the model

Yi = the observed, measured value of Y, our dependent variable for the ith observation,

i = 1,...,N

b0 = the expected value of Y when all of X1 and X2 are equal to zero

X1i = the observed, measured value of X1 for the i
th observation

b1 = the regression coe�cient of the regression of Y on X1

X2i = the observed, measured value of X2 for the i
th observation

b2 = the regression coe�cient of the regression of Y on X2

ei = the random residual associated with the ith observation,

ei ∼ N(0,σ2
e)

3.4 Hypotheses

The Null Hypothesis (for the Model) (Ho): that the �xed e�ects parameters of the model

(b0, b1 and b2) do not explain variation in the dependent variable (Y), i.e. b0, b1 and b2

are all equal to zero. Our Alternative Hypothesis (HA) is that the �xed e�ects parameters

of the model DO explain variation in the dependent variable, i.e. b0, b1 and b2 are not all

equal to zero.

The simplest mdel would thus be that b1 and b2 have no e�ect, i.e. that they are both

equal to Zero. If that were the case our model would be Y = ¯(Y ) + e

The Null Hypothesis (for the Mean) (Ho): that Ȳ = 0, our Alternative Hypothesis

(HA) is that Ȳ ̸= 0.

The Null Hypothesis (for the Model over and above the Mean) (Ho): that the �xed

e�ects regression parameters of the model over and above the Mean (b1 and b2 over and
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above the Mean) do not explain variation in the dependent variable (Y), i.e. b1 and b2 are

all equal to zero. Our Alternative Hypothesis (HA) is that these �xed e�ects parameters

of the model, over and above the mean, DO explain variation in the dependent variable,

i.e. b1 and b2 are not all equal to zero, see overleaf, pun intended :-).

Suppose we think that leaf burn is a linear function of N% and Cl%

Yi = b0 + b1Xi1 + b2Xi2 + ei

Thus

0.34 = 1b0+ 3.05b1+ 1.45b2 + e1

0.11 = 1b0+ 4.22b1+ 1.35b2 + e2

0.38 = 1b0+ 3.34b1+ 0.26b2 + e3

. . .

. . .

. . .

0.23 = 1b0+ 2.94b1+ 2.22b2 + e30



0.34

0.11

0.38

.

.

.

0.23


=



1 3.05 1.45

1 4.22 1.35

1 3.34 0.26

. . .

. . .

. . .

1 2.94 2.22




b0

b1

b2

+



e1

e2

.

.

.

e30


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Table 1: Example STD Ch 14. Table 14.1 P. 330

Sample X1 (N%) X2 (Cl%) X3 (K%) Ln leaf burn, Y

1 3.05 1.45 5.67 0.34

2 4.22 1.35 4.86 0.11

3 3.34 0.26 4.19 0.38

4 3.77 0.23 4.42 0.68

5 3.52 1.10 3.17 0.18

6 3.54 0.76 2.76 0.00

7 3.74 1.59 3.81 0.08

8 3.78 0.39 3.23 0.11

9 2.92 0.39 5.44 1.53

10 3.10 0.64 6.16 0.77

11 2.86 0.82 5.48 1.17

12 2.78 0.64 4.62 1.01

13 2.22 0.85 4.49 0.89

14 2.67 0.90 5.59 1.40

15 3.12 0.92 5.86 1.05

16 3.03 0.97 6.60 1.15

17 2.45 0.18 4.51 1.49

18 4.12 0.62 5.31 0.51

19 4.61 0.51 5.16 0.18

20 3.94 0.45 4.45 0.34

21 4.12 1.79 6.17 0.36

22 2.93 0.25 3.38 0.89

23 2.66 0.31 3.51 0.91

24 3.17 0.20 3.08 0.92

25 2.79 0.24 3.98 1.35

26 2.61 0.20 3.64 1.33

27 3.74 2.27 6.50 0.23

28 3.13 1.48 4.28 0.26

29 3.49 0.25 4.71 0.73

30 2.94 2.22 4.58 0.23
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3.5 Matrix Notation

thus

Y1 = b0 + b1X11 + b2X12 + e1

Y2 = b0 + b1X21 + b2X22 + e2

. . .

. . .

Yi = b0 + b1Xi1 + b2Xi2 + ei

. . .

. . .

Yn = b0+ b1Xn1 + b2Xn2 + en

rewriting we have

Y1 = 1 ∗ b0 + X11 ∗ b1 + X12 ∗ b2 + e1

Y2 = 1 ∗ b0 + X21 ∗ b1 + X22 ∗ b2 + e2

. . .

. . .

Yi = 1 ∗ b0 + Xi1 ∗ b1 + Xi2 ∗ b2 + ei

. . .

. . .

Yn = 1 ∗ b0+ Xn1 ∗ b1 + Xn2 ∗ b2 + en

In matrix notation

Y = Xb+ e



Y1

Y2

.

.

.

Yn


=



1 X11 X12

1 X21 X22

. . .

. . .

. . .

1 Xn1 Xn2




b0

b1

b2

+



e1

e2

.

.

.

en


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3.6 Parameter Estimates

Estimates of the parameters b,


b0

b1

b2

 are b̂,


b̂0

b̂1

b̂2



σ2
e will be estimated by the Mean Square Error, σ̂2

e

Deviations,

Y = Xb+ e

e = Y −Xb

ê = Y −Xb̂

4 Least-squares

4.1 Derivation of Least Squares

Based on minimising the Sums of Squares of Errors (SSE), where

SSE =
i=n∑
i=1

ê2i

ê′ê = (Y −Xb̂)′(Y −Xb̂)

n.b. ê′ = Y ′ − b̂′X ′

ê′ê = (Y ′ − b̂′X ′)(Y −Xb̂)
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= Y ′Y − b̂′X ′Y − Y ′Xb̂+ b̂′X ′Xb̂

n.b. b̂′X ′Y = Y ′Xb̂

ê′ê = Y ′Y − 2b̂′X ′Y + b̂′X ′Xb̂ (20)

We wish to obtain parameter estimates (b̂) such that ê′ê (SSE) is minimised.

Therefore we can di�erentiate (20), set to zero and solve.

∂

∂b
(ê′ê) =

∂

∂b
(Y ′Y − 2b̂′X ′Y + b̂′X ′Xb̂)

= −2X ′Y + 2X ′Xb̂

−2X ′Y + 2X ′Xb̂ = 0

2X ′Xb̂ = 2X ′Y

4.2 The Normal Equations

X ′Xb̂ = X ′Y

4.3 Obtaining a Solution

(X ′X)−1X ′Xb̂ = (X ′X)−1X ′Y

b̂ = (X ′X)−1X ′Y
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4.4 Example 1

Y = Xb + e

Analyse the e�ect of N% and Cl% on leaf burn

Thus

0.34 = 1b0+ 3.05b1+ 1.45b2 + e1

0.11 = 1b0+ 4.22b1+ 1.35b2 + e2

. . .

. . .

. . .

0.23 = 1b0+ 2.94b1+ 2.22b2 + e30

We could write the model as

Yi = b0 + b1Xi1 + b2Xi2 + planti + ϵi

However, with only 1 observation per plant we cannot seperate planti from ϵi, thus we

are forced to combine them into one term, i.e. we have pooled planti and ϵi into the one

single 'error' or residual ei, where ei = planti + ϵi.

Thus the model becomes

Yi = b0 + b1Xi1 + b2Xi2 + ei

Y = Xb+ e



0.34

0.11

.

.

.

0.23


=



1 3.05 1.45

1 4.22 1.35

. . .

. . .

. . .

1 2.94 2.22




b0

b1

b2

+



e1

e2

.

.

.

e30


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X ′X =


1 1 1 . . 1

3.05 4.22 3.34 . . 2.94

1.45 1.35 0.26 . . 2.22





1 3.05 1.45

1 4.22 1.35

1 3.34 0.26

. . .

. . .

1 2.94 2.22



X ′X =


30 98.36 24.23

98.36 332.3352 81.5834

24.23 81.5834 30.1907



X ′Y =


20.58

61.6502

12.4103



Note, the elements of X ′X and X ′Y are :

X ′X =


N

∑
X1i

∑
X2i∑

X1i
∑

X2
1i

∑
X1iX2i∑

X2i
∑

X1iX2i
∑

X2
2i



X ′Y =


∑

Yi∑
X1iYi∑
X2iYi




30 98.36 24.23

98.36 332.3352 81.5834

24.23 81.5834 30.1907

 b̂ =


20.58

61.6502

12.4103



So the Normal Equations are:
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30b̂0 +98.36b̂1 +24.23b̂2 = 20.58

98.36b̂0 +332.3352b̂1 +81.5834b̂2 = 61.6502

24.23b̂0 +81.5834b̂1 +30.1907b̂2 = 12.4103

(Unique) Inverse of X'X is (X ′X)−1

=


1.12604 −0.33098 −0.00931

−0.33098 0.10623 −0.02142

−0.00931 −0.02142 0.09847



b̂ = (X ′X)−1X ′Y

=


1.12604 −0.33098 −0.00931

−0.33098 0.10623 −0.02142

−0.00931 −0.02142 0.09847




20.58

61.6502

12.4103



b̂ =


b̂0

b̂1

b̂2

 =


2.6531

−0.5285

−0.2900

n.b. rounded to 4 decimal places

To obtain any particular value from b̂, or any combination therof, we use a matrix k′,

which we shall use throughout, in many di�erent forms:

k′ =
[
0 1 0

]
so that

k′b̂ = k′ =
[
0 1 0

]
b̂0

b̂1

b̂2

 i.e. "pulls out" b̂1

i.e. "pulls out" b̂1

If we want to extract b̂0 we would use
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k′ =
[
1 0 0

]
so that

k′b̂ = k′ =
[
1 0 0

]
b̂0

b̂1

b̂2

 i.e. "pulls out" b̂0

4.5 Estimated Model Equation, Prediction Equation

Ŷ = 2.6531− 0.5285 ∗N%− 0.2900 ∗ Cl%

(log of leaf burn)

Total Sums of Squares = Y ′Y

Sums of Squares for the model = b̂′X ′Y

Sums of Squares Error (Residual) = Y ′Y − b̂′X ′Y

Mean Square Error = σ̂2
e =

Y ′Y − b̂′X ′Y

N − r(X)

number of rank of X = 3

observations =30

4.6 Sampling Variance-Covariance Matrix

V (b̂) = (X ′X)−1σ̂2
e

=


v(b̂0) cov(b̂0, b̂1) cov(b̂0, b̂2)

cov(b̂1, b̂0 v(b̂1) cov(b̂1, b̂2)

cov(b̂2, b̂0) cov(b̂2, b̂1) v(b̂2)


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We again use our k′ matrix to obtain the sampling variance of our estimate k′b̂:

V (k′b̂) = k′ V (b̂) k

(X ′X)−1σ2
e =


1.12604 −0.33098 −0.00931

−0.33098 0.10623 −0.02142

−0.00931 −0.02142 0.09847

 ∗ σ2
e

(X ′X)−1σ2
e =


0.099663 −0.02929 −0.000824

−0.02929 0.009402 −0.0018958

−0.000824 −0.0018958 0.008715



k′(X ′X)−1kσ2
e = [0 1 0]


0.099663 −0.02929 −0.000824

−0.02929 0.009402 −0.0018958

−0.000824 −0.0018958 0.008715



0

1

0



k′V (b̂)k = (0.009402)

The standard error, s.e., is then simply the square root of the sampling variance.

And likewise for any other estimate which we write using k'. Compare and check this

against STD Ch14.5, Page 332, or against the classical formulae (i.e. non-matrix) in most

statistics textbooks.

4.7 Parameter estimates and Standard Errors

Thus we have

b̂0 and s.e. (b̂0)

b̂1 and s.e. (b̂1)

b̂2 and s.e. (b̂2)

Thus we can test their signi�cance using a t-test

Assumptions
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- 1. Normally distributed errors

- 2. Finite and homogeneous variance

- 3. Independence of observations

4.8 Hypotheses

We have speci�ed hypotheses for the model and the model over and above the mean; we

have speci�ed a model, equations and obtained solutions/estimates. What about b1 and

b2? We want to continue to subdivide and partition our variability (Sums of Squares) into

the component factors/e�ects. Our Null Hypothesis for b1 will be, that there is no e�ect

of b1, i.e. b1 = 0, i.e. R(b1 | b0, b2) is not statistically signi�cant, and our corresponding

Alternative Hypothesis will be that b1 ̸= 0, i.e. that R(b1 | b0, b2) explains a statistically

signi�cant amount of the variation of the dependent variable. Our Null Hypothesis for

b2 will be, that there is no e�ect of b2, i.e. b2 = 0, i.e. R(b2 | b0, b1) is not statistically

signi�cant, and our corresponding Alternative Hypothesis will be that b2 ̸= 0, i.e. that

R(b2 | b0, b1) explains a statistically signi�cant amount of the variation of the dependent

variable.

4.9 Sums of Squares

Total sums of squares (TSS) = Y'Y = 20.8074

Correction Factor, for the Mean (CF) = Nȳ2 = 14.11788

Sums of Squares for the model = b̂′X ′Y = 18.417732

Sums of Squares Error (Residual) = Y ′Y − b̂′X ′Y

= 20.8074 - 18.417732

= 2.3896675

Number of observation (N) = 30
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r(X) = 3

Note: We sometimes run into problems if the numbers are very large or very small

and/or if there are many numbers, such that the elements of X ′X and X ′Y are very large

or very small, or a mixture of the two. This leads to what is know as numerical instability

and is due to the fact that computers have only a �nite numerical precision (usually about

14 signi�cant digits). We can aleviate this problem by scaling our numbers to be all in the

range 1 to 10, and/or expressing them as deviations from their respective means; this for

both the dependent variable (Y) and also for the independent regression covariates (the

X's). This practise is often called �Centring Variables�.

4.10 Example analysis using SAS

Examples using SAS, with both PROC REG and GLM and explicitly using PROC IML

USING SAS/PROC IML

proc iml;

reset print;

x = { 1 3.05 1.45,

1 4.22 1.35,

1 3.34 0.26,

.

.

1 2.94 2.22}; /* create X matrix */

y = {0.34,

0.11,

0.38,

.

.

0.23}; /* create Y matrix */

xtx = x` * x; /* create X transpose X matrix */

xty = x` * y; /* create X transpose Y matrix */

invxtx = inv(xtx); /* obtain the inverse of X'X */
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bhat = invxtx * xty; /* estimate of b */

tss = y` * y; /* Total Sums of Squares */

ssr = bhat` * xty; /* Reductions Sums of Squares, for the model */

sse = tss - ssr; /* Residual Sums of Squares */

nobs = nrow(x); /* N = number of observations */

rx = 3; /* rank of X */

dfe = nobs - rx; /* residual degrees of freedom, N - r(X) */

sumy = sum(y); /* sum the Ys */

ybar = sumy/nobs; /* average of Y */

cf = nobs * ybar * ybar; /* Correction Factor for the mean */

ssrm = ssr - cf; /* Sums of Squares for the model

corrected for the mean */

mse = sse/dfe; /* Residual Mean Square, Mean Square Error */

covb = invxtx * mse; /* sampling variance-covariance matrix */

yhat = x * bhat; /* estimated value for each observation */

ehat = y - yhat; /* estimates/predictions of the errors */

/* k' matrices to generate Sums of Squares */

/* SS b1 */

kp = {0 1 0};

kb = kp * bhat;

kinvk = kp * invxtx * kp`;

invkk = inv(kinvk);

ss1 = kb` * invkk * kb;

/* SS b2 */

kp = {0 0 1};

kb = kp * bhat;

kinvk = kp * invxtx * kp`;

invkk = inv(kinvk);

ss2 = kb` * invkk * kb;

quit;

USING SAS/PROC GLM

data reg1;

input x1 x2 x3 y;

cards;
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3.05 1.45 5.67 0.34

4.22 1.35 4.86 0.11

. . . .

. . . .

. . . .

2.94 2.22 4.58 0.23

;

/* again, in GLM we are using the options / XPX I

to request that GLM print out X prime X, X prime Y,

and the inverse

*/

proc glm data=reg1;

model y = x1 x2/XPX I;

output out=reg1out p=yhat r=ehat stdp=se;

/* output to a new SAS data set (reg1out), y x1 x2 yhat ehat se */

run;

/* plot, using high quality graphics SAS/GRAPH */

proc gplot data=reg1out;

plot ehat*x1;

run;
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4.11 Hypotheses revisited

Our initial Null Hypothesis was that the �xed e�ects parameters of the model did not

explain variation in the dependent variable. This was the Null Hypothesis for the Model.

We now need to extend our hypotheses to consider the various parts of the Analysis of

Variance (ANOVA) table that we are going to produce.

For the Correction Factor for the Mean, our Null Hypothesis is that the Mean of the

dependent variable, Ȳ , is equal to Zero, and our Alternative Hypothesis is that the Mean

of the dependent variable, Ȳ , is not equal to Zero.

For the Model over and above the Mean, our Null Hypothesis is that the regression

coe�cients, b1 and b2, do not explain variation in the dependent variable, i.e. that b1 = 0

and b2 = 0. This we can write statistically as:

Ho

 b1

b2

 =

 0

0

 vs HA

 b1

b2

 ̸=

 0

0



4.12 Analysis of Variance

Note, the Correction Factor for the mean is testing whether the model Y = b0 + e, i.e.

just a single overall mean, would be adequate. This is why we must be careful; in this case

then b0 would be equivalent to µ, but it is not the same b0 as in our model of b0, b1, b2, in

our model of b0, b1, b2, the term b0 in the model is the INTERCEPT.

V (b̂) = (X ′X)−1σ̂2
e

=


1.12604 −0.33098 −0.00931

−0.33098 0.10623 −0.02142

−0.00931 −0.02142 0.09847

 ∗ 0.0885062
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Table 2: Initial ANOVA, Regression

Source df SS MS E(MS)

Total N=30 Y ′Y= 20.8074

Model r(X) = 3 b̂′X ′Y b̂′X′Y
r(X)

R(b0,b1,b2) = 18.417732 =18.417732/3
= 6.1392442

C.F. 1 Nȳ2 = 14.11788 14.11788

S.S.R.m r(X)-1=2 18.417732 4.2998525/2
R(b1,b2|Mean) - 14.11788

= 4.2998525 = 2.149926 σ2
e + f(b21, b

2
2)

Residual N-r(X) Y ′Y − b̂′X ′Y 2.3897/27
30 - 3 20.8074 - 18.417732
= 27 = 2.3896675 = 0.0885 σ2

e

V (b̂) =


0.0996618 −0.029294 −0.000824

−0.029294 0.0094017 −0.001895

−0.000824 −0.001895 0.0087153



s.e.(b̂0) =
√
0.0996618 = 0.3156926

s.e.(b̂1) =
√
0.0094017 = 0.0969625

s.e.(b̂2) =
√
0.0087153 = 0.0933558

t-test of b̂0 =

∣∣∣∣∣ b̂0

s.e.(b̂0)

∣∣∣∣∣ =
∣∣∣∣ 2.6531

0.3156926

∣∣∣∣ = 8.40406

t-test of b̂1 =

∣∣∣∣∣ b̂1

s.e.(b̂1)

∣∣∣∣∣ =
∣∣∣∣ −0.5285

0.0969625

∣∣∣∣ = 5.45056

t-test of b̂2 =

∣∣∣∣∣ b̂2

s.e.(b̂2)

∣∣∣∣∣ =
∣∣∣∣ −0.2900

0.0933558

∣∣∣∣ = 3.10601
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NOTE: Compare these values and how we obtained them with those from STD P333.

Table A.3 Values of t, from STD, P611.

d.f. (residual) = 27

read down columns 0.05, 0.01, 0.001

at d.f. = 27 we have 2.052, 2.771, 3.690

Thus all 3 values (b̂0, b̂1 and b̂2) are signi�cant at the 1% level

It means that there is a less than 1% chance of obtaining such a value due to random

chance of sampling with 30 observations (and 27 d.f.e.) when there is no real e�ect!!!

4.13 F-tests, t-tests and Chi-squared

See:

SAS documentation,

Base SAS Software,

SAS Language Reference Concepts,

SAS System Concepts,

Functions and CALL Routines

For the analysis of variance (ANOVA) we can look up the tabulated F value for the

Model. The Model has 3 degrees of freedom for the numerator (ndf) and 27 degrees of

freedom for the denominator (ddf). If we are using a 5% probability level for accepting or

rejecting our Null Hypothesis we can look up the critical, tabulated value and �nd that it

is 2.96. Similarly, for our t-test above, with ddf (dfe) of 27, and a 5% probability level then

our [2-tailed] t-test critical value is 2.052. This is straightforward when the probabilities

and degrees of freedom correspond to those we have in our statistical tables, or when we

can easily use linear interpolation to �nd the values we need. However, often we may have

degrees of freedom beyond what are given in the usual published tables. We can make

use of SAS (either the procedure IML, or with the datastep) and the functions �nv(),

tinv(), and cinv(). There are also corresponding functions to give us the probability

corresponding to a given calculated F, t or χ2 value, probf(), probt(), prochi().
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4.13.1 F-values

The function �nv(pupto,ndf,ddf) gives us the critical, tabulated F-value for a probability

less than or equal to pupto, i.e. prob up to. Note, this is usually the reverse (pupto) of

what we want, therefore pupto=1-probability.

If we use the example data from our regression problem, we recall that the Model has

3 degrees of freedom and 27 residual degrees of freedom (dfe, or ddf).

ndf = 3

ddf = 27

probability = 0.05 ≡ 5%

Then the SAS code (in IML) would be

USING SAS/PROC IML

proc iml;

reset print;

ndf = 3;

ddf = 27;

probability = 0.05;

ftab = finv(1-probability,ndf,ddf);

quit;

4.13.2 t-values

We can similarly use tinv(pupto,ddf). Note, pupto is the probability of obtaining up to a

given t-value, i.e. NOT a 2-tailed t-value, but rather a cumulative probability. Therefore
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we want 1-probability. In addition, since we are considering 2-tailed tests, we must divide

our probability by 2. Thus, if we were carrying out a [2-tailed] t-test, with a probability

level of 5% and our 27 residual degrees of freedom, we could write (in PROC IML):

USING SAS/PROC IML

proc iml;

reset print;

ddf = 27;

probability = 0.05;

ttab = tinv(1-probability/2,ddf);

quit;

4.13.3 Chi-squared values

We can similarly use cinv(pupto,ndf). Note, pupto is the probability of obtaining up to a

given χ2, i.e. a cumulative probability. Therefore we want 1-probability.

USING SAS/PROC IML

proc iml;

reset print;

ddf = 27;

probability = 0.05;

chitab = cinv(1-probability,ddf);

quit;
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4.13.4 F, t and Chi-squared values from the datastep

We can also use the SAS datastep to obtain tabulated values; the datastep has similar

functions, �nv(), tinv() and cinv().

/* Using the SAS datastep */

data tabulated;

input pr ndf ddf;

ftab = finv(1-pr,ndf,ddf);

ttab = tinv(1-pr/2,ddf);

chitab = cinv(1-pr,ndf);

cards;

0.05 3 27

0.01 3 27

;

proc print data=tabulated;

var pr ndf ddf ftab ttab chitab;

run;

4.14 Re�ections

N.B.

X'X is symmetric

(X'X)−1, diagonals are positive

TSS, SSR, CF, SSRm, SSE are positive

If the o�-diagonals of (X ′X)−1 are non-zero then the estimates of b̂ are not independent.

We can subdivide SSRm for the regression parameters (the regression on N% and Cl%).
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To obtain the Marginal, Type III, Sums of Squares for b1 and b2

SS (b1) k′ = [0 1 0]

SSi = (k′b̂)′[k′(X ′X)−1k]−1(k′b̂)

So k =


0

1

0



k′b̂ = [0 1 0]


b̂0

b̂1

b̂2

 i.e. "pulls out" b̂1

C = (X ′X)−1 =


C00 C01 C02

C10 C11 C12

C20 C21 C22



=


1.12604 −0.33098 −0.00931

−0.33098 0.10623 −0.02142

−0.00931 −0.02142 0.09847



k′(X ′X)−1k = [0 1 0]


C00 C01 C02

C10 C11 C12

C20 C21 C22



0

1

0



(X ′X)−1k =


1.12604 −0.33098 −0.00931

−0.33098 0.10623 −0.02142

−0.00931 −0.02142 0.09847



0

1

0



(X ′X)−1k =


−0.33098

0.10623

−0.02142



k′(X ′X)−1k = [0 1 0]


−0.33098

0.10623

−0.02142


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k′(X ′X)−1k = (0.10623)

= C11 - i.e. "pulls out" the part of (X'X)−1 corresponding to b1

= 0.10623

SS1 = R(b1 | b0, b2) = -0.5285 * [0.10623]−1 * -0.5285

= 2.6293

Likewise, we can do the same thing for b2.

SS (b2) k′ = [0 0 1]

SSi = (k′b̂)′[k′(X ′X)−1k]−1(k′b̂)

So k =


0

0

1



k′b̂ = [0 0 1]


b̂0

b̂1

b̂2

 i.e. "pulls out" b̂2

C = (X ′X)−1 =


C00 C01 C02

C10 C11 C12

C20 C21 C22



=


1.12604 −0.33098 −0.00931

−0.33098 0.10623 −0.02142

−0.00931 −0.02142 0.09847



k′(X ′X)−1k = [0 0 1]


C00 C01 C02

C10 C11 C12

C20 C21 C22



0

0

1



= C22 - i.e. "pulls out" the part of (X'X)−1 corresponding to b2
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Table 3: Complete Regression ANOVA

ANOVA
Source df SS MS F − ratio E(MS)

Total, N = 30 Y ′Y
TSS 20.8074

Model, r(X) b̂′X ′Y 6.13924 69.37 σ2
e + f(b20, b

2
1, b

2
2)

SSR = 3 18.417732

Mean, 1 Nȳ2 14.11788 159.513 σ2
e + f(ȳ)

C.F. 14.11788

Model, after
the mean,

SSRm r(X)− 1 b̂′X ′Y −Nȳ2

R(b1b2 | Mean) = 2 4.29985 2.149926 24.291 σ2
e + f(b21, b

2
2)

SSb1 1 b̂21C
−1
11 2.6293 29.708 σ2

e + f(b21)
R(b1 | b0b2)

SSb2 1 b̂22C
−1
22 0.85406 9.650 σ2

e + f(b22)
R(b2 | b0b1)

Error, N − r(X) Y ′Y − b̂′X ′Y .0885062 σ2
e

Residual 30− 3 2.3896675

= 0.09847

SS2 = R(b2 | b0, b1) = -0.2900 * [0.09847]−1 * -0.2900

= 0.85406

The tabulated F values are :

Fpr=5%,ndf=1,ddf=27 = 4.210

Fpr=5%,ndf=2,ddf=27 = 3.354
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Fpr=5%,ndf=3,ddf=27 = 2.960

4.15 Order of Equations

It is important to note that the order in which we set up the equations does not matter.

That is to say we can just as easily have X2 �rst, as:

Yi = b0 + b2X2i + b1X1i + ei

Try re-doing the above problem but with X2 �rst, and note that it makes not one iota

of di�erence.

Note, the sum of the Type III Sums of Squares (the Marginal Sums of Squares [what we

are dealing with]) do not necessarily add up to the Sums of Squares of the Model corrected

for the mean! See STD Page 333 for a discussion. There can be 2 main reasons, co-linearity

(a real problem), or the fact that we have an unbalanced design (your problem!).

4.16 Standardized regression coe�cients

The regression coe�cient estimates that we have computed tell us by how much the de-

pendent variable (what we have called Y) is expected to change, for each unit change in

your independent variable (X1, X2, etc). Consequently the regression estimates are di-

mensioned in terms of the variables. This can make it di�cult to compare one regression

estimate with another (if they refer to variables which have quite di�erence variances).

Thus it is not uncommon to see standardized regression coe�cients presented, such that

all variables, dependent and independent have unit variance. We can obtain standardized

regression coe�cients by dividing the regression parameter estimate (e.g. b̂1 ) by the ratio

of the sample standard deviation of the dependent variable σ̂Y ) to the sample standard

deviation of the regressor (the independent variable, σ̂X1 )

standardized regression coe�cient =
b̂1
σ̂Y

σ̂X1

N.B. σ̂Y = σ̂e
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4.17 Partial R2

Another quite useful statistic that we can compute is the partial R2. This gives us a

measure of how much of the 'variation' is explained by an e�ect. We compute this R2 as

the Sums of Squares for an e�ect divided by the Corrected Total Sums of Squares.

CTSS = TSS − CF

= SSRm + SSE

Example:

R2
b1
= SSb1/CTSS

= 2.6293/6.6895 = 0.393

R2
b2
= SSb2/CTSS

= 0.85406/6.6895 = 0.1277
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5 t-test

see STD, Ch.3, P56 and Ch.14, P333, also STD Ch10.6 P269-271

Ho parameter = constant

vs

HA parameter ̸= constant

which we can re-write in a standard form as

Ho parameter - constant = 0

vs

HA parameter - constant ̸= 0

Thus

Ho b1 = -0.5

vs

HA b1 ̸= -0.5

which becomes

Ho b1 - -0.5 = 0

vs

HA b1 - -0.5 ̸= 0

Formally we can consider a t-test to be a statistical test with an appropriate hypothesis

to be accepted or rejected.

Test a regression parameter e.g.

parameter − constant (null hypothesis)

s.e. parameter
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Test a regression parameter∣∣∣∣∣bi − constant

s.e.bi

∣∣∣∣∣ = t-value

to test whether bi is signi�cantly di�erent from constant. Compare against the tabulated

t-values at a given level of probability, 5%, 1%, 0.1%

e.g. test whether b1 is signi�cantly di�erent from -0.5.

∣∣∣∣−0.5285−−0.5

0.0969625

∣∣∣∣

=
∣∣∣∣ −0.0285

0.0969625

∣∣∣∣

= 0.2941 n.s.s.

5.1 Testing a group of regression parameters simultaneously

- test if b1 & b2 are signi�cant, jointly

SS12 = (k′b̂)′[k′(X ′X)−1k]−1(k′b̂)

k′ =

 0 1 0

0 0 1

 n.b. 2 rows

k′b̂ =

 0 1 0

0 0 1



b̂0

b̂1

b̂2

 =

 b̂1

b̂2

 =

 −0.5285

−0.2900


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C = (X ′X)−1 =


C00 C01 C02

C10 C11 C12

C20 C21 C22



k′(X ′X)−1k =

 0 1 0

0 0 1



C00 C01 C02

C10 C11 C12

C20 C21 C22



0 0

1 0

0 1



=

 C11 C12

C21 C22


i.e. "pulls out" the subcell of C pertaining to b1 and b2

=

 0.10623 −0.02142

−0.02142 0.09847



Then compute the inverse, and pre-multiply by (k′b̂)′ , and post-multiply by (k′b̂) .

This will give us the joint e�ect of b1 and b2, i.e. R(b1 b2 | b0) ≡ SSRm 0.10623 −0.02142

−0.02142 0.09847

−1

=

 9.84537 2.14165

2.14165 10.62125



(k′b̂)′[k′(X ′X)−1k]−1(k′b̂)

= [−0.5285− 0.2900]

 9.84537 2.14165

2.14165 10.62125

 −0.5285

−0.2900



= 4.29985
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6 Con�dence Intervals

6.1 C.I. for a �xed e�ect estimate

- Parameter ± standard error

- e.g. b1 and s.e.b1

- to construct the 95% con�dence interval

tdfe,5% = 2.052 from S & T Table A.3. Values of t

dfe = 27

b̂1 - 2.052 * s.e.b1 to b̂1 + 2.052 * s.e. b1

= -0.5285 - 2.052 * 0.0969625 to -0.5285 + 2.052 * 0.0969625

= -0.5285 - 0.19897 to -0.5285 + 0.19897

= -0.72747 to -0.32953

Thus 95% of the time the real b1 will lie within our lower and upper limits.

See STD P333

6.2 C.I. for a random e�ect variance component

See STD Ch 19.2. In STD the example uses a data set on the variability amongst sheep,

there are 7 sheep, so N = 7, and N-1 corresponds to the degrees of freedom for the

estimation of the variance component (σ2). This is correct for this example, it is the degrees

of freedom for the variance component. So, in general, we can use this methodology, but

bearing in mind that we should use the degrees of freedom for the variance component.

Thus, in our example, with tobacco plants, we estimated the residual variance (from our

ANOVA table) as 0.0885, with 27 degrees of freedom. Note: the 27 degrees of freedom

are NOT the residual degrees of freedom, rather they are the degrees of freedom for the

variance component, i.e. that line of our ANOVA.

Thus we have, d.f. = 27, and σ̂2
e = 0.08851.
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therefore Pr

(
(d.f.)σ̂2

e

χ2
df=27,pr=.025

≤ σ2 ≤ (d.f.)σ̂2
e

χ2
df=27,pr=.975

)
= 0.95

We have to obtain the χ2 value for d.f.=27, for Pr=0.975 and Pr=0.025, these are 14.6

and 43.2 respectively.

thus
27 ∗ 0.08851
χ2
df=27,pr=.025

=
2.3897

43.2
= 0.05532

and
27 ∗ 0.08851
χ2
df=27,pr=.975

=
2.3897

14.6
= 0.1637

Therefore we can compute a 95% C.I. for our variance component; it is from 0.05532

to 0.1637.

50



7 Predicted/Estimated/Fitted Values

See STD, Ch 13.5 and 14.8

7.1 Predicting the value of an observation.

The value of any observation (Yi) is estimable, (Ŷi)

Ŷ = Xb̂

So, to predict the value of Y for sample No5, N = 3.52 and Cl = 1.10, take line 5 from

X, i.e. X5

Ŷ5 = X5b̂

Ŷ5 = (1 3.52 1.10)


2.6531

−0.5285

−0.2900



Ŷ5 = 0.47378

The sampling variance, V (X5b̂) = X5V (b̂)X ′
5 , is simply

X5(X
′X)−1X ′

5σ̂
2
e

= (1 3.52 1.10)


1.12604 −0.33098 −0.00931

−0.33098 0.10623 −0.02142

−0.00931 −0.02142 0.09847




1

3.52

1.10

 ∗ 0.0885

= V (Ŷ5) = s.v. = 0.0039795

s.e. of estimate, (Ŷ5) =
√
s.v.

=
√
0.0039795

=> s.e. = 0.06308

(µy | X1 = 3.52 X2 = 1.10)
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= 0.47378 ± 2.052 *0.06308

= 0.47378 ± 0.1294471

n.b. t5% for 27 d.f. from Table A.3 (STD, Page 611)

7.2 Using SAS PROC GLM+IML to estimate a �tted value

proc glm data=reg1;

model y = x1 x2/XPX I;

output out=reg1out p=yhat r=ehat stdp=se;

/* output to a new SAS data set (reg1out), y x1 x2 yhat ehat se */

estimate 'obs 1' intercept 1 x1 3.05 x2 1.45;

estimate 'obs 5' intercept 1 x1 3.52 x2 1.10;

run;

USING SAS/PROC IML

previous IML matrices and code here

x5 = {1 3.52 1.10};

y5 = x5 * b;

sv = x5 * invxtx * x5` * mse;

se = sqrt(sv);

7.3 Predicting the value of some future observation

i.e. one not in the data set, see STD, Ch. 13.5 and Ch.14.8.

e.g. N% = 3.11 Cl% = 1.0

The formula for estimating the Y value is the same

Ŷ0 = X0b̂

Ŷ = (1 3.11 1.0)


2.6531

−0.5285

−0.2900


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= 0.719465

However, the sampling variance must re�ect the fact that there is a sampling variance

due to our prediction, and another due to the random error associated with any new

observation.

Thus sampling variance =

[1 +X0(X
′X)−1X ′

0]σ̂
2
e

Compute the �tted value for each observation, calculate the sampling variance for each

observation and hence the 95 % con�dence limits for each observation. Plot!

7.4 Using SAS PROC GLM+IML to predict a future value

proc glm data=reg1;

model y = x1 x2/XPX I;

output out=reg1out p=yhat r=ehat stdp=se;

/* output to a new SAS data set (reg1out), y x1 x2 yhat ehat se */

estimate 'obs new' intercept 1 x1 3.11 x2 1.0;

run;

USING SAS/PROC IML

previous IML matrices and code here

xnew = {1 3.11 1.0};

ynew = xnew * b;

sv = (1 + xnew * invxtx * xnew`) * mse;

se = sqrt(sv);
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8 Linear and Quadratic Regressions

The relationship between Y and some or all, of the X's may not be linear, but quadratic

in nature, with an intermediate optimum.

This can be investigated in exactly the same manner as previously, except that we shall

add a column for the X2 terms. For example, if we wish to see whether there is a quadratic

e�ect of N% on leaf burn (returning to our example data from STD, P333) then we might

propose a new model;

8.1 Linear Model

Y = b0 + b1X1 + b2X2 + b3X
2
1 + e

Thus

Y = X b + e

8.2 Matrix Equations

0.34

0.11

.

.

.

0.23


=



1 3.05 1.45 9.3025

1 4.22 1.35 17.8084

. . . .

. . . .

. . . .

1 2.94 2.22 8.6436




b0

b1

b2

b3

+



e1

e2

.

.

.

e30



and proceed as before

N.B. Fit linear and quadratic terms and test the signi�cance of the quadratic compo-

nent, e.g. Fit N% and N%2. Test R(b3 | b0, b1, b2).
If N%2 (quadratic) is signi�cant then retain both the linear and quadratic components,

since the covariance between the estimates is not likely to be zero.
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If N%2 (quadratic) is not signi�cant then it can be dropped from the model.

X ′X =


30 98.36 24.23 332.3352

98.36 332.3352 81.5834 1156.3337

24.23 81.5834 30.1907 282.13909

332.3352 1156.3337 282.13909 4137.7125



X ′Y =


20.58

61.6502

12.4103

189.26515



(X ′X)−1 =


32.172314 −19.2762 0.2069003 2.7888251

−19.2762 11.667078 −0.153356 −1.701812

0.2069003 −0.153356 0.0999773 0.0194221

2.7888251 −1.701812 0.0194221 0.2505146



b̂ = (X ′X)−1X ′Y =


4.1195217

−1.423378

−0.279752

0.1317229


TSS = Y'Y = 20.8074

SSR (Model) = b̂′X ′Y

= (4.1195 -1.42338 -0.27975 0.131723)


20.58

51.6502

12.4103

189.26515


= 18.486994

SSE = TSS - SSR

= 20.8074 -18.486994

= 2.3204
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SSRm = SSR - CF

= 18.486994 -14.11788

= 4.3691136

MSR = SSR/4

= 18.486994/4

= 4.6217

MSRm = SSRm/3

= 4.3691136/3

= 1.4564

MSE = σ̂2
e

= 2.3204/(30− 4)

= 2.3204/26

= 0.0892

8.3 Testing the quadratic e�ect

SS = (k′b̂)′[k′(X ′X)−1k]−1(k′b̂)

k′ =
[
0 0 0 1

]

k′b̂ =
[
0 0 0 1

]

b̂0

b̂1

b̂2

b̂3

 =
[
b̂3
]
=
[
0.1317229

]

The e�ect (marginal, over and above other e�ects) of the quadratic is: .06926

Using our standard, ubiquitous formula for the Sums of Squares of an e�ect,

(k
′
b̂)

′
[k

′
(X

′
X)−1k]−1(k

′
b̂)

we have:
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k
′
(X

′
X)−1k = 0.2505146

(k
′
b̂)

′
[k

′
(X

′
X)−1k]−1(k

′
b̂) = .131723 * [.2505146]−1 * .131723

= .06926

Thus we can conclude that there is no quadratic e�ect of N% on log leaf burn.

Therefore the term b3 (N
2) can be dropped from the model.

8.4 Using SAS PROC GLM to �t a quadratic

proc glm data=reg1;

model y = x1 x2 x1*x1/XPX I;

run;
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Table 4: ANOVA, including a quadratic

ANOVA
Source df SS MS F − ratio E(M.S.)

Total, N = 30 Y ′Y
TSS 20.8074

Model, r(X) b̂′X ′Y 4.6217
SSR = 4 18.486994

Mean, 1 Nȳ2 14.11788 158.2722
C.F. 14.11788

Model, after r(X)− 1 b̂′X ′Y −Nȳ2

the mean, SSRm = 3 4.3691136 1.4564 16.327
R(b1b2b3 | Mean)

SSb1 1 b̂21C
−1
11

R(b1 | b0b2b3)

SSb2 1 b̂22C
−1
22

R(b2 | b0b1b3)

SSb3 1 b̂23C
−1
33 0.06926 0.776n.s.s. σ2

e + f(b23)
R(b3 | b0b1b2)

Error, N − r(X) Y ′Y − b̂′X ′Y .0892
SSE 30− 4 2.3204 σ2

e
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9 Interactions amongst regression e�ects

There may be interactions between the regression e�ects, that is to say, the e�ect of one

factor may not be independent of another regression e�ect; so far our assumed model has

ASSUMED that they are independent.

This can be investigated in exactly the same manner as previously, except that we shall

add a column for the interaction term. For example, if we wish to see whether there is an

interaction between N% and Cl% on leaf burn (returning to our example data from STD,

P333) then we might propose a new model;

9.1 Linear Model

Y = b0 + b1X1 + b2X2 + b3X3 + b4X1X2 + e

We would add a column for X1 ∗X2 and proceed with our analysis exactly as before.

We would use exactly the same logic as for a quadratic; that is to say, that with our

(two-way) interaction between X1 and X2 we would have the linear terms (for X1 and

X2) in our model as well. We would �rst of all test the interaction between X1 and X2

to determine whether it needs to be retained in the model. Much as for a quadratic, if

it does then the linear, lower-order e�ects of X1 and X2 must remain in our model, and

testing their statistical signi�cance is pointless. If on the otherhand the interaction term

is not statistically signi�cant, then we should drop it from the model, re-run the analysis

and then test the linear e�ects of X1 and X2.

We can have more than one interaction term in the model, we might have X1 ∗ X2,

and X2 ∗X3, etc. We can even have a 3-way interaction (if we have also included all the

possible 2-way interactions). We can also have quadratics as well as interactions between

the linear e�ects all in the same model!
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9.2 Using SAS PROC GLM to �t an interaction

proc glm data=reg1;

model y = x1 x2 x1*x2/XPX I;

run;
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10 Correlations

Only when both (all) variables are random, separate, in the sense of being di�erent traits,

and in the sense of coming from experimental units which are independent of one another,

and where the residual errors are normally distributed, i.e. bivariate normal, and where

there are no �xed e�ects a�ecting either of the traits.

i.e. where we can describe each observation as Yji = µj + eji

where Yji = the observation on the ith experimental unit for trait j

µj = overall mean for trait j

and eji = the random e�ect of the ith experimental unit for trait j

10.1 Variance-Covariance matrix

Consider that we have measurements on 3 traits X1, X2 and X3.

Table 5: Example data for correlations

Obs X1 X2 X3

1 . . .

2 . . .

. . . .

. . . .

. . . .

N . . .

Then, using the conventional simple formulae for variances and covariances:
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V (X1) = σ2
X1

=

∑i=N
i=1 X2

1i −
(
∑i=N

i=1
X1i)

2

n

n− 1

V (X2) = σ2
X2

=

∑i=N
i=1 X2

2i −
(
∑i=N

i=1
X2i)

2

n

n− 1

cov(X1X2) = σX1X2 =

∑i=N
i=1 X1iX2i −

∑i=N

i=1
X1i

∑i=N

i=1
X2i

n

n− 1

etc.

Thus:



∑
X2

1i−
(
∑

X1i)
2

n

n−1

∑
X1iX2i−

∑
X1i

∑
X2i

n

n−1

∑
X1iX3i−

∑
X1i

∑
X3i

n

n−1

∑
X2iX1i−

∑
X2i

∑
X1i

n

n−1

∑
X2

2i−
(
∑

X2i)
2

n

n−1

∑
X2iX3i−

∑
X2i

∑
X3i

n

n−1

∑
X3iX1i−

∑
X3i

∑
X1i

n

n−1

∑
X3iX2i−

∑
X3i

∑
X2i

n

n−1

∑
X3−

(
∑

X3i)
2

n

n−1



≡


V (X1) cov(X1X2) cov(X1X3)

cov(X1X2) V (X2) cov(X2X3)

cov(X1X3) cov(X2X3) V (X3)



We can then scale these to unit variance to give simple correlations.
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10.2 Simple correlations

≡ R =



1 cov(X1X2)√
V (X1)V (X2)

cov(X1X3)√
V (X1)V (X3)

cov(X1X2)√
V (X1)V (X2)

1 cov(X2X3)√
V (X2)V (X3)

cov(X1X3)√
V (X1)V (X3)

cov(X2X3)√
V (X2)V (X3)

1



≡ R =


1 r12 r13

r12 1 r23

r13 r23 1



10.3 Partial correlations

R−1 = C =


C11 C12 C13

C21 C22 C23

C31 C32 C33


Then the partial correlation between two variables i and j, adjusting for the other

variables in our variance-covariance matrix, is

rij =
−Cij√
CiiCjj

e.g. partial correlation of 1 and 3, adjusting for 2, is

r13|2 =
−C13√
C11C33
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10.4 Partial correlations, adjusting for only some variables

Suppose that we measure 5 traits and compute the matrix of (simple) correlations amongst

them:

R =



1 r12 r13 r14 r15

r12 1 r23 r24 r25

r13 r23 1 r34 r35

r14 r24 r34 1 r45

r15 r25 r35 r45 1



If we are interested in the partial correlation between 1 and 3, adjusting for 2 and 5,

then we simply 'pull out' the correlations amongst 1, 2, 3 and 5, and then proceed:

R1235 =


1 r12 r13 r15

r12 1 r23 r25

r13 r23 1 r35

r15 r25 r35 1



R−1 = C =


C11 C12 C13 C15

C21 C22 C23 C25

C31 C32 C33 C35

C51 C52 C53 C55



10.5 Statistical signi�cance of an estimate of a correlation coe�-

cent

Test signi�cance via a t-test (see Stats I notes of Hypothesis Testing of a correlation).

t =
r
√
N − k√
1− r2

but only for testing the Null Hypothesis (Ho) that the real, true parameter ρ = 0
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where r = correlation (estimate)

N = number of observations

k = number of parameters

so for a simple correlation r12 k = 2

and for a partial correlation r13|2 k = 3

and for a partial correlation r13|24 k = 4

and we would compare this calculated t value against a tabulated t value with d.f. -

(N-k)

A numerical example e.g. from STD, P 337

The variables are X1, X2 and Y respectively

R =


1 .20940 −.717729

.20940 1 −.499638

−.717729 −.499638 1



R−1 = C =


2.1968526 .4368302 1.7950017

.4368302 1.4195512 1.0227874

1.7950017 1.0227874 2.7993483



ry1|2 =
−1.7950017√

2.1968526 ∗ 2.7993483
= −.723829

Compare ry1 = -.717729

with ry1|2 = -.723829

not much di�erence, here, but it can be very substantial, possibly even changing sign.

e.g. perhaps r12 = + 0.56 and r12 ... = -0.4!!!
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10.6 Sampling Distribution of an estimate of a correlation coe�-

cent

STD, Chapter 4, Ch. 11.4, P292; Stats I notes

Fisher's (1921) transformation is

z = .5 ln

(
1 + r)

1− r

)
(21)

standard deviation =
1√
n− 3

(22)

which has a normal distribution, not a t distribution => use ∞ d.f. We can use

a table of the t values with an in�nite number of degrees of freedom (because the t-

distribution tends to the normal as the sample size increases), or we can use a table of

normal distribution values.

See STD, Page 292-293 for an example and for more details about correlations and

their statistical signi�cance.

e.g. correlation of % resin and % rubber was 0.527 from 50 plants

n - 3 = 47

Using (21) we calculate the z value as

z = .5 ln
[
1 + r

1− r

]

= .5 ln
[
1.527

.473

]

= .5 ln[3.23] = .5 ∗ 1.172

= .586

66



Thus, using (22), we can obtain the standard deviation of z

σ =

√
1

47
= .146

10.7 Statistical Signi�cance

To test the statistical signi�cance we use the estimate divided by it's standard deviation

and compare this to the NORMAL distribution, not a t-distribution.

.586

.146
= 4.01

Compare this value (4.01) against the tabulated cuto� values of the Normal distribution

tables to determine the probability. We �nd that it is statistically signi�cant at 1%.

10.8 Con�dence Interval

Con�dence Interval, CI (z ± K s.d.z) (n.b. on the transformed scale), where K is the

appropriate cuto� values from the Normal distribution tables. Note, a 5% probability cor-

responds to a cuto� of 1.96 standard deviations. Therefore to determine a 95% Con�dence

Interval:

= .586 ± 1.96 * (.146)

= .300 to .872

How can we 'back-transform' from our z scale to the 'observed' scale? We need to �nd

the inverse function of (21). It is

r =
e2z − 1

e2z + 1
(23)

If we therefore back transform .300 by substituting in (23)

= 0.290
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and similarly backing transform .872

r =
e2z − 1

e2z + 1

= 0.703

estimate is 0.527

95% C.I. is 0.290 to 0.703

- Non-symmetric

Note, if we want to compare our correlation estimate with a value other than Zero, we

would need to transform (using the z-transformation) this hypothesized value too.
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10.9 Using SAS CORR

data reg1;

input x1 x2 x3 y;

cards;

3.05 1.45 5.67 0.34

4.22 1.35 4.86 0.11

.

.

.

2.94 2.22 4.58 0.23

;

proc corr cov;

/* the cov option to proc corr provides the variances and covariances

too */

var x1 x2 y x3;

run;

/* produce the correlations amongst x1 y and x3 adjusting for x2,

i.e. the partial correlations adjusted for x2 */

proc corr cov;

var x1 y x3;

partial x2;

run;

/* produce the correlation between x1 and y adjusting for x2 and x3,

i.e. the partial correlation adjusted for x2 and x3 */

proc corr cov;

var x1 y;

partial x2 x3;

run;

Compute the simple correlations amongst X1, X2, X3 and Y.

Compute the partial correlations and con�dence intervals.
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10.10 Correlations accounting for the e�ects of �xed e�ects

If the original requirement (of no �xed e�ects) is not met what can we do? Well, we

could analyse each trait seperately, output the residuals, match up the residuals (for each

trait) from each experimental unit and then compute the correlation. Or, we could use a

multivariate model (see the appropriate section on MyCourses).

An example will demonstrate the problem. We carry out an experiment to look at

weight gain (X6) and two blood parameters (X1, X2) in a group of humans who were fed

various levels of energy (X4) and protein (X5). We have hypothesised that the energy and

protein will/may a�ect the individuals' weightgain and blood parameters. We obtain the

following data:

data coleman;

input pid x1 x2 x3 x4 x5 x6;

cards;

1 3.83 28.87 7.20 26.60 6.19 37.01

2 2.89 20.10 -11.71 24.40 5.17 26.51

3 2.86 69.05 12.32 25.70 7.04 36.51

4 2.92 65.40 14.28 25.70 7.10 40.70

5 3.06 29.59 6.31 25.40 6.15 37.10

6 2.07 44.82 6.16 21.60 6.41 33.90

7 2.52 77.37 12.70 24.90 6.86 41.80

8 2.45 24.67 -0.17 25.01 5.78 33.40

9 3.13 65.01 9.85 26.50 6.51 41.01

10 2.44 9.99 -0.05 28.01 5.57 37.20

11 2.09 12.20 -12.86 23.51 5.62 23.30

12 2.52 22.55 0.92 23.60 5.34 35.20

13 2.22 14.30 4.77 24.51 5.80 34.90

14 2.67 31.79 -0.96 25.80 6.19 33.10

15 2.71 11.60 -16.04 25.20 5.62 22.70

16 3.14 68.47 10.62 25.01 6.94 39.70

17 3.54 42.64 2.66 25.01 6.33 31.80

18 2.52 16.70 -10.99 24.80 6.01 31.70

19 2.68 86.27 15.03 25.51 7.51 43.10
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Table 6: Correlations when �xed e�ects are present

Pid X1 X2 X3 X4 X5 X6

1 3.83 28.87 7.20 26.60 6.19 37.01

2 2.89 20.10 -11.71 24.40 5.17 26.51

3 2.86 69.05 12.32 25.70 7.04 36.51

4 2.92 65.40 14.28 25.70 7.10 40.70

5 3.06 29.59 6.31 25.40 6.15 37.10

6 2.07 44.82 6.16 21.60 6.41 33.90

7 2.52 77.37 12.70 24.90 6.86 41.80

8 2.45 24.67 -0.17 25.01 5.78 33.40

9 3.13 65.01 9.85 26.50 6.51 41.01

10 2.44 9.99 -0.05 28.01 5.57 37.20

11 2.09 12.20 -12.86 23.51 5.62 23.30

12 2.52 22.55 0.92 23.60 5.34 35.20

13 2.22 14.30 4.77 24.51 5.80 34.90

14 2.67 31.79 -0.96 25.80 6.19 33.10

15 2.71 11.60 -16.04 25.20 5.62 22.70

16 3.14 68.47 10.62 25.01 6.94 39.70

17 3.54 42.64 2.66 25.01 6.33 31.80

18 2.52 16.70 -10.99 24.80 6.01 31.70

19 2.68 86.27 15.03 25.51 7.51 43.10

20 2.37 76.73 12.77 24.51 6.96 41.01
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20 2.37 76.73 12.77 24.51 6.96 41.01

;

/* analyse each trait seperately,outputting residuals, use id = pid

so we can be certain of matching up the residuals from the same

patients

*/

proc glm data=coleman;

id pid;

model x6 = x4 x5;

output out=residx6 p=yhatx6 r=ehatx6;

run;

proc glm data=coleman;

id pid;

model x1 = x4 x5;

output out=residx1 p=yhatx1 r=ehatx1;

run;

proc glm data=coleman;

id pid;

model x2 = x4 x5;

output out=residx2 p=yhatx2 r=ehatx2;

run;

proc print data=residx612;

run;

/* sort by Patient id (pid), to be absolutely certain

that we can merge correctly

*/

proc sort data=residx6;

by pid;

run;

proc sort data=residx1;

by pid;

run;

proc sort data=residx2;

by pid;

run;
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/* merge residuals from x6 and x2, by pid */

data resids61;

merge residx6 residx1;

by pid;

run;

/* merge with residuals from x2 */

data resids;

merge resids61 residx2;

by pid;

run;

proc print data=resids;

run;

proc print data=resids;

var pid ehatx6 ehatx1 ehatx6;

run;

proc corr data=resids;

var ehatx6 ehatx1 ehatx2;

run;

/* multivariate GLM, only suitable if each obs is

independent, if all independent variables are

fixed effects, and if the same independent

variables are a suitable model for each

dependent variable, AND if ther are no missing

values for any of the observations

*/

proc glm data=coleman;

id pid;

model x6 x1 x2 = x4 x5;

output out=residx612 p=yhatx6 yhatx1 yhatx2 r=ehatx6 ehatx1 ehatx2;

manova /printe;

run;

proc print data=residx612;

var pid ehatx6 ehatx1ehatx2;

run;

/* (much) more sophisticated model using proc mixed

in multivariate mode, however this is only suitable
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when the only random effect in a model is the

observational unit

*/

data coleman1;

set coleman;

y = x6;

trait = 6;

output;

y = x1;

trait = 1;

output;

y = x2;

trait = 2;

output;

run;

proc print data=coleman1;

run;

data coleman2;

set coleman1;

keep pid trait y x4 x5;

run;

proc print data=coleman2;

var pid trait y x4 x5;

run;

/* data layout will look like :

pid trait y x4 x5

1 6 37.01 26.60 6.19

1 1 3.83 26.60 6.19

1 2 28.87 26.60 6.19

2 6 26.51 24.60 5.17

2 1 2.89 24.60 5.17

2 2 20.10 24.60 5.17

3 6 36.51 25.70 7.04

etc

*/

proc mixed data=coleman2;

class pid trait;
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model y = trait trait*x4 trait*x5;

repeated trait/type=un subject=pid rcorr;

run;

/* INCORRECT correlations, because we have ignored the

fixed effects of X4 and X5

*/

proc corr data=coleman;

var x6 x1 x2;

run;

Results.

Good, from the residuals, or the proc GLM multivariate ANOVA (MANOVA option),

or the proc mixed multivariate mode. NOTE, the layout of the traits is 6, 1, 2


1 −0.1266 0.3844

. 1 0.0979

. . 1



Bad, from the simple corr


1 0.1930 0.7534

. 1 0.1811

. . 1


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11 1-Way Classi�cation. STD. Ch.7

- 1-way classi�cation, completely random design (CRD)

- allocation of experimental units to treatments must be completely at random

- or, the classi�cations must be 'levels'/groupings which are mutually exclusive, e.g.

sex (Male, Female, Castrate), and then within each of these groups the experimental units

are able to be considered as a random sample of such.

Nitrogen content of red clover plants, or di�erent diets being fed to dairy cows.

The random assignment to treatments, or the experimental units within each group

being a true random sample IS a CRITICAL assumption; ignore it at your peril!

5 inoculants + a composite = 6 treatments

Table 7: Rhizobium example

3DOk1 3DOk5 3DOk4 3DOk7 3DOk13 composite

Diet 1 Diet 2 Diet 3 Diet 4 Diet 5 Diet 6

19.4 17.7 17.0 20.7 14.3 17.3

32.6 24.8 19.4 21.0 14.4 19.4

27.0 27.9 9.1 20.5 11.8 19.1

32.1 25.2 11.9 18.8 11.6 16.9

33.0 . . 18.6 14.2 20.8

11.1 Linear Model

We can write the linear model as :

Yij = µ+ trti + plotij + ϵij
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However, we have only 1 measurement on each of the classi�cation e�ect experimental

units (plots). Thus we CANNOT separate the e�ect of plotij from ϵij, and they will be

both combined into a term eij = plotij + ϵij. Note also that we can, and indeed should,

consider that plot (or whatever is the experimental unit) is nested within treatment. This

is an important point as it should aid you in understanding when an e�ect is considered

'nested' in more complicated models!

σ2
e = σ2

plot + σ2
ϵ

Yij = µ+ trti + eij

11.2 Parameters of the Model

µ, trt1, trt2, trt3, trt4, trt5, trt6, σ2
e

11.3 Hypotheses to be tested

The �rst hypothesis to test is, as per our test in the multiple regression models, whether

the model explains variation in the dependent variable. Our Null Hypothesis (Ho) will be

that the Model does not explain variation in Y (our dependent variable), and our Alternate

Hypothesis (HA) will be that the Model does explain variation in Y. Thus:

Ho



µ

trt1

trt2

trt3

trt4

trt5

trt6


=



0

0

0

0

0

0

0



Note: although there are 7 lines to this Ho the rank is 6, 1 for the mean and 5 amongst

the 6 treatments (see below). We could also write the hypothesis about the model as:
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Ho



µ+ trt1

µ+ trt2

µ+ trt3

µ+ trt4

µ+ trt5

µ+ trt6


=



0

0

0

0

0

0



The next hypothesis is about the Mean; as before it is: Ho: Ȳ = 0, and HA: Ȳ ̸= 0

Continuing our subdivision of the source of variation, we have the Model over and

above the Mean. An obvious hypothesis to be tested that �ows directly and immediately

from the very reason for the experiment is to test whether there are di�erences between

the treatments (over and above the Mean). This we can describe (in words) in the form of

a 'Null Hypothesis' that the treatments are all equal, vs an 'Alternative Hypothesis' that

the treatments are not all equal; i.e.

Ho : trt1 = trt2 = trt3 = trt4 = trt5 = trt6

HA : treatments are not all equal

The Null Hypothesis we can re-write as a series of comparisons:

6 Treatments, 5 separate comparisons

i) trt1 = trt2

ii) trt1 = trt3

iii) trt1 = trt4

iv) trt1 = trt5

v) trt1 = trt6

which we can re-write as a series of comparisons with Null Hypotheses of Zero:
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i) trt1 - trt2 = 0

ii) trt1 - trt3 = 0

iii) trt1 - trt4 = 0

iv) trt1 - trt5 = 0

v) trt1 - trt6 = 0

Which we can express statistically (as one hypothesis) as:

Ho



trt1 − trt2

trt1 − trt3

trt1 − trt4

trt1 − trt5

trt1 − trt6


=



0

0

0

0

0



and

HA



trt1 − trt2

trt1 − trt3

trt1 − trt4

trt1 − trt5

trt1 − trt6


̸=



0

0

0

0

0



The Null Hypothesis we can also re-write as another series of comparisons:

e.g. 6 Treatments, 5 separate comparisons

i) trt6 = trt1

ii) trt6 = trt2

iii) trt6 = trt3

iv) trt6 = trt4

v) trt6 = trt5
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which we can re-write as a series of comparisons with Null Hypotheses of Zero:

i) trt6 - trt1 = 0

ii) trt6 - trt2 = 0

iii) trt6 - trt3 = 0

iv) trt6 - trt4 = 0

v) trt6 - trt5 = 0

Which we can express statistically as:

Ho



trt6 − trt1

trt6 − trt2

trt6 − trt3

trt6 − trt4

trt6 − trt5


=



0

0

0

0

0



and

HA



trt6 − trt1

trt6 − trt2

trt6 − trt3

trt6 − trt4

trt6 − trt5


̸=



0

0

0

0

0



Note: these are equivalent, and they lead to EXACTLY the same test of signi�cance

and Sums of Squares.

More completely, we have a hypothesis for the Model, Ho that the model does not

explain variation in Y, i.e. R(µ,trt) is not statistically signi�cant, versus the Alternative

Hypothesis (HA) that the Model does explain variation in Y, i.e. that the Reduction Sums

of Squares due to the Model R(µ,trt) is statistically signi�cant. We have a hypothesis

about the Correction Factor for the mean: our Ho is that the mean of Y equals Zero (note

Not µ), and the HA is that Ȳ ̸= 0. Our Null Hypothesis for the Model over and above the

Mean, R(trt | µ), is that there are no di�erences amongst the levels of treatment in their
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e�ect on Y. This is what we have described above in our hypothesis for treatments, since

treatments is the only e�ect in the model over and above the mean, so in this case they

are synonymous.

11.4 Matrix Equations

Any observation can be written

Y11 = µ+ trt1 + e11

Y12 = µ+ trt1 + e12

Y13 = µ+ trt1 + e13

Y14 = µ+ trt1 + e14

Y15 = µ+ trt1 + e15

Y21 = µ+ trt2 + e21

Y22 = µ+ trt2 + e22

Y25 = µ+ trt2 + e25

Y61 = µ+ trt6 + e61

etc

We can then re-write these as:

Y11 = µ+ 1trt1 + 0trt2 + 0trt3 + 0trt4 + 0trt5 + 0trt6 + e11

Y12 = µ+ 1trt1 + 0trt2 + 0trt3 + 0trt4 + 0trt5 + 0trt6 + e12
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Y13 = µ+ 1trt1 + 0trt2 + 0trt3 + 0trt4 + 0trt5 + 0trt6 + e13

Y21 = µ+ 0trt1 + 1trt2 + 0trt3 + 0trt4 + 0trt5 + 0trt6 + e21

Y22 = µ+ 0trt1 + 1trt2 + 0trt3 + 0trt4 + 0trt5 + 0trt6 + e22

Y25 = µ+ 0trt1 + 1trt2 + 0trt3 + 0trt4 + 0trt5 + 0trt6 + e25

Y31 = µ+ 0trt1 + 0trt2 + 1trt3 + 0trt4 + 0trt5 + 0trt6 + e31

Y32 = µ+ 0trt1 + 0trt2 + 1trt3 + 0trt4 + 0trt5 + 0trt6 + e32

Y61 = µ+ 0trt1 + 0trt2 + 0trt3 + 0trt4 + 0trt5 + 1trt6 + e61

We can then write these equations in a matrix notation, much as before:

Y11

...

...

Y25

...

...

Y65


=



1 1 0 0 0 0 0
...
...

1 0 1 0 0 0 0
...
...

1 0 0 0 0 0 1





µ

trt1

trt2

trt3

trt4

trt5

trt6


+



e11
...
...

e25
...
...

e65



- a "design" matrix, X
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11.5 Example, adapted from STD, Ch.7



Y11

Y12

...

...

Y21

...

...

Y54

...

...

Y65



=



19.4

32.6
...
...

17.7
...
...

11.6
...
...

20.8



=



1 1 0 0 0 0 0

1 1 0 0 0 0 0
...
...

1 0 1 0 0 0 0
...
...

1 0 0 0 0 1 0
...
...

1 0 0 0 0 0 1





µ

trt1

trt2

trt3

trt4

trt5

trt6


+



e11

e12
...
...

e21
...
...

e54
...
...

e65



Y = Xb+ e

11.6 The Normal Equations

thus the Normal Equations are :

X ′Xb̃ = X ′Y

28 5 4 4 5 5 5

5 5 0 0 0 0 0

4 0 4 0 0 0 0

4 0 0 4 0 0 0

5 0 0 0 5 0 0

5 0 0 0 0 5 0

5 0 0 0 0 0 5





µ

trt1

trt2

trt3

trt4

trt5

trt6


=



556.5

144.1

95.6

57.4

99.6

66.3

93.5



However, there is no unique inverse, since the 6 ( trti ) treatment columns (2 to 7) add

to the mean µ (the �rst column). The matrix X has 7 columns, but the rank of X, r(X),

is only 6. this means that the rank of X ‘X is also 6. Therefore it does not have a unique

inverse, the determinant is zero and the matrix is singular.
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Thus we use a generalised inverse, G.

G = (X ′X)−

b̃ = GX ′Y

n.b. b̃ is a solution.

11.7 Generalised inverses from GLM and IML

The generalised inverse produce by GLM (X‘X)−, together with the solution vector b̃ is

shown below:

(X ′X)− =



0.2 −0.2 −0.2 −0.2 −0.2 −0.2 0

−0.2 0.4 0.2 0.2 0.2 0.2 0

−0.2 0.2 0.45 0.2 0.2 0.2 0

−0.2 0.2 0.2 0.45 0.2 0.2 0

−0.2 0.2 0.2 0.2 0.4 0.2 0

−0.2 0.2 0.2 0.2 0.2 0.4 0

0 0 0 0 0 0 0



b̃GLM =



18.7

10.12

5.2

−4.35

1.22

−5.44

0


=



µ̃

˜trt1
˜trt2
˜trt3
˜trt4
˜trt5
˜trt6



The generalised inverse produce by IML (X‘X)−, together with the solution vector b̃

is shown below, note that they are NOT the same as that produced by GLM:
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

0.0265306 0.0020408 0.0091837 0.0091837 0.0020408 0.0020408 0.0020408

0.0020408 0.1693878 −0.037755 −0.037755 −0.030612 −0.030612 −0.030612

0.0091837 −0.037755 0.205102 −0.044898 −0.037755 −0.037755 −0.037755

0.0091837 −0.037755 −0.044898 0.205102 −0.037755 −0.037755 −0.037755

0.0020408 −0.030612 −0.037755 −0.037755 0.1693878 −0.030612 −0.030612

0.0020408 −0.030612 −0.037755 −0.037755 −0.030612 0.1693878 −0.030612

0.0020408 −0.030612 −0.037755 −0.037755 −0.030612 −0.030612 0.1693878



b̃IML =



16.992857

11.827143

6.9071429

−2.642857

2.9271429

−3.732857

1.7071429


=



µ̃

˜trt1
˜trt2
˜trt3
˜trt4
˜trt5
˜trt6



Ŷ = Xb̃ is estimable

TSS = Y ′Y

SSR = b̃′X ′Y

SSE = TSS - SSR

CF = Nȳ2

b̃IML =



16.992857

11.827143

6.9071429

−2.642857

2.9271429

−3.732857

1.7071429


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11.8 Analysis of Variance

ANOVA

Source df SS MS F − ratio E(MS)

Total, N = 28 Y ′Y

TSS = 12154.23

Model, r(X) b̃′X ′Y 1978.852 154.864

SSR = 6 = 11873.112

Mean, 1 Nȳ2 11060.437 865.584

C.F. = 11060.437

Model, after

the mean r(X)− 1 812.675 162.535 12.720∗∗ σ2
e + f

∑
(trti − ¯trt)2

SSRm = 5 ≡ σ2
e +Q(trt)

Error, N − r(X) 281.118 12.778 σ2
e

SSE = 22

- we test the signi�cance of the model using an F-ratio, see STD. Table A.6.

- Model F-ratio = 154.864 with 6 d.f. and 22 d.f.

Tabulated F values F6,22,5% = 2.55, F6,22,1% = 3.76

Fcalc ≫ Ftabulated 6,22,5% ⇒ we conclude that the model accounts for a signi�cant

amount of variation.

- we test the signi�cance of the Mean using an F-ratio, see STD. Table A.6.

- Mean F-ratio = 865.584 with 1 d.f. and 22 d.f.

Tabulated F values F1,22,5% = 4.301, F1,22,1% = 7.945

Fcalc ≫ Ftabulated 1,22,5% ⇒ we conclude that the Mean is signi�cantly di�erent from

Zero.

- we test the signi�cance of the model over and above the Mean (ie the e�ect of treat-

ment) using an F-ratio, see STD. Table A.6.

- Model over and above the Mean F-ratio = 12.72 with 5 d.f. and 22 d.f.

Tabulated F values F5,22,5% = 2.661, F5,22,1% = 3.988

Fcalc ≫ Ftabulated 5,22,5% ⇒ we conclude that the treatments (i.e. the model over and

above the mean) accounts for a signi�cant amount of variation.
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11.9 Expectations of Mean Squares

Here is a good place to review the concept of the expectations of Mean Squares; it helps us

in determining which Mean Square to use as the divisor to use to test what. The general

rule is that we use, as divisor, the Mean Square which comes from the experimental unit

for the factor which we are testing. So far, we have 1 experimental unit = 1 sampling

unit and the Residual Mean Square has been and is the appropriate divisor Mean Square.

However, when we come to Nested Models (Sub-sampling) and some Factorial Models this

will change!

Source df E(MS)

Model, after

the mean r(X)− 1 σ2
e +

1
6−1

∑
ni(trti − ¯trt)2 ≡ σ2

e +Q(trt)

Residual N − r(X) σ2
e

11.10 Using SAS/IML

USING SAS/PROC IML

proc iml;

reset print;

x = {1 1 0 0 0 0 0,

1 1 0 0 0 0 0,

1 1 0 0 0 0 0,

1 1 0 0 0 0 0,

1 1 0 0 0 0 0,

1 0 1 0 0 0 0,

1 0 1 0 0 0 0,

1 0 1 0 0 0 0,

1 0 1 0 0 0 0,

1 0 0 1 0 0 0,

1 0 0 1 0 0 0,

1 0 0 1 0 0 0,

1 0 0 1 0 0 0,
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1 0 0 0 1 0 0,

1 0 0 0 1 0 0,

1 0 0 0 1 0 0,

1 0 0 0 1 0 0,

1 0 0 0 1 0 0,

1 0 0 0 0 1 0,

1 0 0 0 0 1 0,

1 0 0 0 0 1 0,

1 0 0 0 0 1 0,

1 0 0 0 0 1 0,

1 0 0 0 0 0 1,

1 0 0 0 0 0 1,

1 0 0 0 0 0 1,

1 0 0 0 0 0 1,

1 0 0 0 0 0 1};

y = {19.4,

32.6,

27.0,

32.1,

33.0,

17.7,

24.8,

27.9,

25.2,

17.0,

19.4,

9.1,

11.9,

20.7,

21.0,

20.5,

18.8,

18.6,

14.3,

14.4,

11.8,

11.6,

14.2,

17.3,

19.4,

19.1,

16.9,

20.8};
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xtx = x` * x;

xty = x` * y;

invxtx = ginv(xtx); /* NOTE: we are using ginv() */

b = invxtx * xty;

tss = y` * y;

sumy = sum(y);

nobs = nrow(x);

dftrt = 5;

dfe = nobs - dftrt - 1;

ssr = b` * xty;

ybar = sumy/nobs;

cf = nobs * ybar * ybar;

ssrm = ssr - cf;

sse = tss - ssr;

mse = sse/dfe;

/* Estimates of fitted values and their standard errors */

k1 = {1, 1, 0, 0, 0, 0, 0};

kb = k1` * b;

kgk = k1` * invxtx * k1;

sv = kgk * mse;

se = sqrt(sv);

k2 = {1, 0, 1, 0, 0, 0, 0};

kb = k2` * b;

kgk = k2` * invxtx * k2;

sv = kgk * mse;

se = sqrt(sv);

k3 = {1, 0, 0, 1, 0, 0, 0};

kb = k3` * b;

kgk = k3` * invxtx * k3;

sv = kgk * mse;

se = sqrt(sv);

k4 = {1, 0, 0, 0, 1, 0, 0};

kb = k4` * b;

kgk = k4` * invxtx * k4;

sv = kgk * mse;

se = sqrt(sv);

k5 = {1, 0, 0, 0, 0, 1, 0};
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kb = k5` * b;

kgk = k5` * invxtx * k5;

sv = kgk * mse;

se = sqrt(sv);

k6 = {1, 0, 0, 0, 0, 0, 1};

kb = k6` * b;

kgk = k6` * invxtx * k6;

sv = kgk * mse;

se = sqrt(sv);

/* Estimates of differences between treatments and the standard */

/* errors of the differences */

k12 = {0, 1, -1, 0, 0, 0, 0};

kb = k12` * b;

kgk = k12` * invxtx * k12;

sv = kgk * mse;

se = sqrt(sv);

k13 = {0, 1, 0, -1, 0, 0, 0};

kb = k13` * b;

kgk = k13` * invxtx * k13;

sv = kgk * mse;

se = sqrt(sv);

k14 = {0, 1, 0, 0, -1, 0, 0};

kb = k14` * b;

kgk = k14` * invxtx * k14;

sv = kgk * mse;

se = sqrt(sv);

k15 = {0, 1, 0, 0, 0, -1, 0};

kb = k15` * b;

kgk = k15` * invxtx * k15;

sv = kgk * mse;

se = sqrt(sv);

k16 = {0, 1, 0, 0, 0, 0, -1};

kb = k16` * b;

kgk = k16` * invxtx * k16;

sv = kgk * mse;

se = sqrt(sv);
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/* N.B. kp = k' to generate the test for treatments, i.e. SS trt */

kp = {0 1 -1 0 0 0 0,

0 1 0 -1 0 0 0,

0 1 0 0 -1 0 0,

0 1 0 0 0 -1 0,

0 1 0 0 0 0 -1};

df = nrow(kp);

kb = kp * b;

kgk = kp * invxtx * kp`;

ss = kb` * inv(kgk) * kb;

ms = ss/df;

f = ms/mse;

/* N.B. kp = k' to generate the test for treatments,

using the second example set of contrasts i.e. SS trt */

kp = {0 -1 0 0 0 0 1,

0 0 -1 0 0 0 1,

0 0 0 -1 0 0 1

0 0 0 0 -1 0 1,

0 0 0 0 0 -1 1};

df = nrow(kp);

kb = kp * b;

kgk = kp * invxtx * kp`;

ss = kb` * inv(kgk) * kb;

ms = ss/df;

f = ms/mse;

/* fitted values and residuals */

yhat = x * b;

ehat = y - yhat;

11.11 Using SAS/GLM

USING SAS/PROC GLM

data oneway;

input trt y;

cards;

1 19.4

1 32.6
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1 27.0

1 32.1

1 33.0

2 17.7

2 24.8

2 27.9

2 25.2

3 17.0

3 19.4

3 9.1

3 11.9

4 20.7

4 21.0

4 20.5

4 18.8

4 18.6

5 14.3

5 14.4

5 11.8

5 11.6

5 14.2

6 17.3

6 19.4

6 19.1

6 16.9

6 20.8

;

proc glm;

classes trt;

model y = trt;

contrast ' trt 1 vs trt 2' trt 1 -1 0 0 0 0;

contrast ' trt 1 vs trt 3' trt 1 0 -1 0 0 0;

contrast ' trt 1 vs trt 4' trt 1 0 0 -1 0 0;

contrast ' trt 1 vs trt 5' trt 1 0 0 0 -1 0;

contrast ' trt 1 vs trt 6' trt 1 0 0 0 0 -1;

contrast ' trt 2 vs trt 3' trt 0 1 -1 0 0 0;

contrast ' trt 2 vs trt 4' trt 0 1 0 -1 0 0;

contrast ' trt 2 vs trt 5' trt 0 1 0 0 -1 0;

contrast ' trt 2 vs trt 6' trt 0 1 0 0 0 -1;

contrast ' trt 3 vs trt 4' trt 0 0 1 -1 0 0;

contrast ' trt 3 vs trt 5' trt 0 0 1 0 -1 0;

contrast ' trt 3 vs trt 6' trt 0 0 1 0 0 -1;

contrast ' trt 4 vs trt 5' trt 0 0 0 1 -1 0;
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contrast ' trt 4 vs trt 6' trt 0 0 0 1 0 -1;

contrast ' trt 5 vs trt 6' trt 0 0 0 0 1 -1;

estimate ' trt 1 - trt 2' trt 1 -1 0 0 0 0;

estimate ' trt 1 - trt 3' trt 1 0 -1 0 0 0;

estimate ' trt 1 - trt 4' trt 1 0 0 -1 0 0;

estimate ' trt 1 - trt 5' trt 1 0 0 0 -1 0;

estimate ' trt 1 - trt 6' trt 1 0 0 0 0 -1;

estimate ' trt 2 vs trt 3' trt 0 1 -1 0 0 0;

estimate ' trt 2 vs trt 4' trt 0 1 0 -1 0 0;

estimate ' trt 2 vs trt 5' trt 0 1 0 0 -1 0;

estimate ' trt 2 vs trt 6' trt 0 1 0 0 0 -1;

estimate ' trt 3 vs trt 4' trt 0 0 1 -1 0 0;

estimate ' trt 3 vs trt 5' trt 0 0 1 0 -1 0;

estimate ' trt 3 vs trt 6' trt 0 0 1 0 0 -1;

estimate ' trt 4 vs trt 5' trt 0 0 0 1 -1 0;

estimate ' trt 4 vs trt 6' trt 0 0 0 1 0 -1;

estimate ' trt 5 vs trt 6' trt 0 0 0 0 1 -1;

estimate ' mean + trt 1 ' intercept 1 trt 1 0 0 0 0 0;

estimate ' mean + trt 2 ' intercept 1 trt 0 1 0 0 0 0;

estimate ' mean + trt 3 ' intercept 1 trt 0 0 1 0 0 0;

estimate ' mean + trt 4 ' intercept 1 trt 0 0 0 1 0 0;

estimate ' mean + trt 5 ' intercept 1 trt 0 0 0 0 1 0;

estimate ' mean + trt 6 ' intercept 1 trt 0 0 0 0 0 1;

/* A [needlessly] complete contrast statement to compute the Sums of

Squares for trt, which also happens to be SSRm */

contrast 'SS trt' intercept 0 trt 1 -1 0 0 0 0,

intercept 0 trt 1 0 -1 0 0 0,

intercept 0 trt 1 0 0 -1 0 0,

intercept 0 trt 1 0 0 0 -1 0,

intercept 0 trt 1 0 0 0 0 -1;

/* A contrast statement to compute the Sums of Squares for

trt, which also happens to be SSRm */

contrast 'SS trt' trt 1 -1 0 0 0 0,

trt 1 0 -1 0 0 0,

trt 1 0 0 -1 0 0,

trt 1 0 0 0 -1 0,

trt 1 0 0 0 0 -1;

/* Another contrast statement to compute the Sums of Squares for

trt, which also happens to be SSRm */

contrast 'SS trt' trt -1 0 0 0 0 1,
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trt 0 -1 0 0 0 1,

trt 0 0 -1 0 0 1,

trt 0 0 0 -1 0 1,

trt 0 0 0 0 -1 1;

/* A contrast to compare the 5 inoculants vs 6th (mixture)

note: the coefficients sum to Zero, a contrast,

note: no need to divide by 5, avoid fractions */

contrast ' SS compare' trt 1 1 1 1 1 -5;

/* An estimate of the first 5 inoculants - mixture.

note, scaleup to avoid fractions, use /divisor= */

estimate 'Inocs vs mixture' trt 1 1 1 1 1 -5/divisor=5;

lsmeans trt/stderr pdiff;

/* fitted values and residuals */

output out=fred1 p=yhat r=ehat;

run;

proc print data=fred1;

run;

Compare this with STD Ch 7.3, P141-147.
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12 Fitted Values

It is most important to know that the '�tted' values' are always estimable. Anything and

everything that is statistically estimable can be expressed as a linear function of these

�tted values. Thus, if we cannot express something as a linear function of these �tted

values then it is said to be 'non-estimable'.

Ŷ = Xb̃

Ŷ11 =
[
1 1 0 0 0 0 0

]



16.992857

11.827143

6.9071429

−2.642857

2.9271429

−3.732857

1.7071429


= 28.82

Ŷ23 =
[
1 0 1 0 0 0 0

]



16.992857

11.827143

6.9071429

−2.642857

2.9271429

−3.732857

1.7071429


= 23.9

Ŷ31 =
[
1 0 0 1 0 0 0

]



16.992857

11.827143

6.9071429

−2.642857

2.9271429

−3.732857

1.7071429


= 14.35
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Note that in this Completely Randomized Design, one way ANOVA the estimate or

�tted value, for treatment 1 is the mean of the observations for treatment 1, i.e. :

1

n1

j=n1∑
j=1

Yij

Suggestion : see the estimate of Y1 above.

Any estimable value (estimate) must have a standard error.

⇒ if Ŷ = Xb̃

then V (Ŷ ) = V (Xb̃)

= XV (b̃)X ′

n.b. V (b̃) = (X ′X)−σ̂2
e

thus V (Ŷ ) = X(X ′X)−X ′σ̂2
e

V (Ŷ11) = X11(X
′X)−X ′

11σ̂
2
e

where X11 = [1 1 0 0 0 0 0]

⇒ V (Ŷ11) = 2.55552

⇒ s.e.Y11 =
√
2.55552 = 1.5986

Note that this equals
√

σ2
e

n1

and V (Ŷ23) = X23(X
′X)−X ′

23σ̂
2
e

where X23 = [1 0 1 0 0 0 0]

⇒ V (Ŷ23) = 3.19444

⇒ s.e.Y23 =
√
3.19444 = 1.7873

and V (Ŷ31) = X31(X
′X)−X ′

31σ̂
2
e

where X31 = [1 0 0 1 0 0 0]

⇒ V (Ŷ31) = 3.19444

⇒ s.e.Y31 =
√
3.19444 = 1.7873

Question: What is the SAS code to estimate/generate these?
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13 Assumptions for the Model

1. The model is assumed to be appropriate.

2. The model is assumed to be linear and additive.

3. Assignment to classes (treatments) is without error.

4. The error terms are independent and uncorrelated.

5. The errors are random with a �nite and homogeneous variance, σ2
e

Normality of the error terms is not required for obtaining solutions. It is only required

for statistical tests, hypothesis testing and tests of signi�cance. See STD. 7.10 Page 174.
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14 Treatment Di�erences

14.1 Estimation of Treatment Di�erences

What is the di�erence between treatment 1 and 2?

Ŷ11 = X11b̃ = [1 1 0 0 0 0 0] b̃

Ŷ21 = X21b̃ = [1 0 1 0 0 0 0] b̃

If Ŷ11 and Ŷ21 are estimable, then (Ŷ11 − Ŷ21) is estimable, i.e. treatment1 - treatment2

.

Thus X11b̃−X21b̃ = (X11 −X21)b̃

[(1 1 0 0 0 0 0)− (1 0 1 0 0 0 0)] b̃

= [0 1 − 1 0 0 0 0] b̃

= 11.827143− 6.9071429

= 4.92

≡ 28.82− 23.9

Question: What would be the appropriate SAS statements for this?
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14.2 Sampling Variance of Treatment Di�erences

We estimated the treatment di�erences from k′b̃ , k′ = [0 1 − 1 0 0 0 0]

⇒ s.v.(k′b̃) = k′ s.v.(b̃) k

= k′(X ′X)−kσ̂2
e

s.e.diff =
√
s.v.

Using a numerical example, with the (X ′X)− and b̃ from GLM, we have

(X ′X)− =



0.2 −0.2 −0.2 −0.2 −0.2 −0.2 0

−0.2 0.4 0.2 0.2 0.2 0.2 0

−0.2 0.2 0.45 0.2 0.2 0.2 0

−0.2 0.2 0.2 0.45 0.2 0.2 0

−0.2 0.2 0.2 0.2 0.4 0.2 0

−0.2 0.2 0.2 0.2 0.2 0.4 0

0 0 0 0 0 0 0



b̃GLM =



18.7

10.12

5.2

−4.35

1.22

−5.44

0


=



µ̃

˜trt1
˜trt2
˜trt3
˜trt4
˜trt5
˜trt6



Using our formula, from above,

(X ′X)−k =



0.2 −0.2 −0.2 −0.2 −0.2 −0.2 0

−0.2 0.4 0.2 0.2 0.2 0.2 0

−0.2 0.2 0.45 0.2 0.2 0.2 0

−0.2 0.2 0.2 0.45 0.2 0.2 0

−0.2 0.2 0.2 0.2 0.4 0.2 0

−0.2 0.2 0.2 0.2 0.2 0.4 0

0 0 0 0 0 0 0





0

1

−1

0

0

0

0


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(X ′X)−k =



0.0

0.2

−0.25

0.0

0.0

0.0

0



and k′(X ′X)−k = [0 1 − 1 0 0 0 0]



0.0

0.2

−0.25

0.0

0.0

0.0

0


= 0.45

Thus, the sampling variance of our estimate of the di�erence is ( k′(X ′X)−k ∗ MSE

)= 0.45 * 12.778 = 5.7501, and the standard error is the square root of this, i.e.
√
5.7501

= 2.398

Thus our estimate of

̂t1 − t2 = 4.92

s.e.̂t1−t2
= 2.398

Is this di�erence statistically signi�cant ?

What is the con�dence interval for our estimate ?
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14.3 Test Whether Di�erence is Statistically Signi�cant

t-test

t =
estimate − constant

s.e.

estimate = k′b̃ = 4.92

constant = 0 = (Ho under the null hypothesis)

s.e. = 2.398

⇒ tcalc =
4.92

2.398

= 2.052

d.f. error = 22

Tabulated t values (S&T., Table A.3)

t22,5% = 2.074

t22,1% = 2.819

tcalc < ttabulated (2.052 < 2.074), therefore we can conclude that the di�erence is not

statistically signi�cant (at the 5% level).

Suppose that we were interested in whether the di�erence was 4 or not!

14.4 Testable Hypotheses

Let us go back to the '�tted values', (Ŷ = Xb̃); n.b. as always!

We have that an observation from the 1st treatment is estimable. It does not matter

particularly which one, they all have the same estimated, or �tted, value.

thus Ŷ11 = µ̃+ ˜trt1 = k
′

1b̃

k
′

1 = ( 1 1 0 0 0 0 0 )

similarly Ŷ24 = µ̃+ ˜trt2 = k
′

2b̃
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k
′

2 = ( 1 0 1 0 0 0 0 )

and Ŷ35 = µ̃+ ˜trt3 = k
′

3b̃

k
′

3 = ( 1 0 0 1 0 0 0 )

and Ŷ41 = µ̃+ ˜trt4 = k
′

4b̃

k
′

4 = ( 1 0 0 0 1 0 0 )

and Ŷ52 = µ̃+ ˜trt5 = k
′

5b̃

k
′

5 = ( 1 0 0 0 0 1 0 )

and Ŷ61 = µ̃+ ˜trt6 = k
′

6b̃

k
′

6 = ( 1 0 0 0 0 0 1 )

Therefore di�erences between �tted values are estimable.

So Ŷ11 − Ŷ24 = (µ̃+ ˜trt1)− (µ̃+ ˜trt2) = ˜trt1 − ˜trt2

with k
′

1−2 = ( 0 1 − 1 0 0 0 0 )

which corresponds to one of the comparisons, or Contrasts, from our original Null Hypoth-

esis relating to treatments.

likewise Ŷ11 − Ŷ35 = (µ̃+ ˜trt1)− (µ̃+ ˜trt3) = ˜trt1 − ˜trt3

with k
′

1−3 = ( 0 1 0 − 1 0 0 0 )

and Ŷ11 − Ŷ41 = (µ̃+ ˜trt1)− (µ̃+ ˜trt4) = ˜trt1 − ˜trt4

with k
′

1−4 = ( 0 1 0 0 − 1 0 0 )

and Ŷ11 − Ŷ52 = (µ̃+ ˜trt1)− (µ̃+ ˜trt5) = ˜trt1 − ˜trt2

with k
′

1−5 = ( 0 1 0 0 0 − 1 0 )

and Ŷ11 − Ŷ61 = (µ̃+ ˜trt1)− (µ̃+ ˜trt6) = ˜trt1 − ˜trt6

with k
′

1−6 = ( 0 1 0 0 0 0 − 1 )
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Putting the k
′
rows together we have

k
′

trt =



0 1 −1 0 0 0 0

0 1 0 −1 0 0 0

0 1 0 0 −1 0 0

0 1 0 0 0 −1 0

0 1 0 0 0 0 −1


This matrix, k

′
trt, we can use in our general formula for computing Sums of Squares:

thus SStrt = (k
′

trtb̃)
′
[k

′

trt(X
′
X)−ktrt]

−1(k
′

trtb̃)

in fact this will give us exactly the result for our Analysis of Variance, R(trt|µ). In

this case it is slightly redundant since we already have the Sums of Squares for the Model

corrected for the Mean, which corresponds to the Sums of Squares for treatments, since

there is nothing else in the model apart from treatments (over and above the Mean).

However, and it cannot be stressed enough, it illustrates how we can build up Sums of

Squares for speci�ed Hypotheses tests; all derived from linear combinations of the �tted

values.

14.5 Using the SAS CONTRAST statement

We can use the SAS CONTRAST statement in PROC GLM to build up and compute Sums

of Squares and tests of hypothesis in an analagous manner. With SAS the k
′
matrix is

divided into named sections corresponding to the e�ects in the model. If we have speci�ed

our model in GLM as

proc glm;

classes trt;

model y = trt;

/* A contrast statement to compute the Sums of Squares for trt */

contrast 'SS trt' trt 1 -1 0 0 0 0,

trt 1 0 -1 0 0 0,

trt 1 0 0 -1 0 0,

trt 1 0 0 0 -1 0,

trt 1 0 0 0 0 -1/E=MS to be used as Error;
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Note: We can specify the Mean Square to be used as the �Error� (divisor), it defaults

to the MSE if we omit it. At the moment this is what we want, we are using the MSE as

our divisor in our F-tests. However, later we will need to over-ride this and specify the MS

(as for example in Nested/Sub-sampling models).

This corresponds to our design matrix (X) having the following columns:

( µ trt1 trt2 trt3 trt4 trt5 trt6 )

SAS names the corresponding parts of the k
′
matrix as:

intercept - refers to the �rst column, corresponding to that for the mean

trt - refers to columns 2 to 7, corresponding to those for treatment levels

So we can write a CONTRAST statement (after the model statement) as:

contrast 'SS treatments' intercept 0 trt 1 -1 0 0 0 0,

intercept 0 trt 1 0 -1 0 0 0,

intercept 0 trt 1 0 0 -1 0 0,

intercept 0 trt 1 0 0 0 -1 0,

intercept 0 trt 1 0 0 0 0 -1;

We have 5 rows to our matrix, analagous to the 5 rows of our k
′
matrix. At the end of

each row we have a comma (,) to indicate to the CONTRAST statement that it is really

the end of the row. At the end of the 5th row we end with a semicolon (;), being the normal

SAS end-of-statement indicator. Note that we have 6 coe�cients for trt, which correspond

to the 6 levels for treatments.

There is one simpli�cation that we can make to the above CONTRAST statement.

We can see that for the intercept coe�cient it is Zero for each level of the intercept (in

fact there is only 1 level) for each row, so we can, if we want, omit it. This is simply an

abbreviation. Thus we can write:

contrast 'SS treatments' trt 1 -1 0 0 0 0,

trt 1 0 -1 0 0 0,

trt 1 0 0 -1 0 0,
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trt 1 0 0 0 -1 0,

trt 1 0 0 0 0 -1;

Thus, to recap we could write our SAS statements as:

proc glm;

classes trt;

model y = trt;

contrast 'SS treatments' trt 1 -1 0 0 0 0,

trt 1 0 -1 0 0 0,

trt 1 0 0 -1 0 0,

trt 1 0 0 0 -1 0,

trt 1 0 0 0 0 -1;

contrast 'other SS trt' trt 1 -1 0 0 0 0,

trt 0 1 -1 0 0 0,

trt 0 0 1 -1 0 0,

trt 0 0 0 1 -1 0,

trt 0 0 0 0 1 -1;

run;

quit;

14.6 Using the SAS ESTIMATE statement

Another useful feature of the SAS PROC GLM procedure is the ESTIMATE statement,

which allows us to compute '�tted values', or indeed any value that is 'estimable'.

Consider the '�tted value', or estimate, of Ŷ11, = µ̃ + ˜trt1. A suitable k
′
matrix to

estimate this would be

Ŷ11 = µ̃+ ˜trt1 = k
′

1b̃

k
′

1 = ( 1 1 0 0 0 0 0 )

in a manner similar to the CONTRAST statement, we therefore obtain the following

SAS ESTIMATE statement:
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estimate 'mu + trt 1' intercept 1 trt 1 0 0 0 0 0;

Consider the '�tted value', or estimate, of Ŷ24, = µ̃ + ˜trt2. A suitable k
′
matrix to

estimate this would be

Ŷ24 = µ̃+ ˜trt2 = k
′

2b̃

k
′

2 = ( 1 0 1 0 0 0 0 )

and we have the following SAS ESTIMATE statement:

estimate 'mu + trt 2' intercept 1 trt 0 1 0 0 0 0;

We are not restricted to estimating only �tted values, anything that is a linear function

of the �tted values, and hence estimable, can be estimated with the ESTIMATE statement,

via a suitably speci�ed k
′
matrix and ESTIMATE statement. For example, we have seen

that trt1 − trt2 is estimable, and that a suitable k
′
matrix would be

k
′

1−2 = ( 0 1 − 1 0 0 0 0 )

which we could translate into the following SAS ESTIMATE statement:

estimate 'trt 1 - trt 2' intercept 0 trt 1 -1 0 0 0 0;

and as before we could therefore abreviate to the following:

estimate 'trt 1 - trt 2' trt 1 -1 0 0 0 0;
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We could also compare the average of the �rst 5 treatments with the 6th treatment

(which is a mix of the �rst 5).

estimate 'trt 6 - 1...5' trt -1 -1 -1 -1 -1 5/divisor=5;

14.7 Equation Order

In our CRD example we had 6 diets and we called them Diet 1, Diet 2, Diet 3, Diet 4, Diet

5 and Diet 6. This was also the order in which we arranged them when we were setting up

the design matrix (X). It should be noted that this ordering is/was completely arbitrary.

We could just have easily put Diet 6 as the �rst one so that it was the �rst column related

to treatments.

Re-number the data from Section 11.5 so that Diet 6 is now the �rst diet and Diet

4 is the second diet and re-analyse. Construct the ANOVA table as well as estimating

treatment di�erences and �tted values. Note that they are the same as the values in

the notes even though the generalized inverse (X
′
X)− and the solution vector (b̃) are

substantially di�erent.

Although not a statistical proof, this does help to illustrate the fact that the various

estimable values are invariant to the ordering and to the choice of the generalized inverse.

107



15 Random e�ects models

See Steel, Torrie and Dickey, Ch. 7.5

If the e�ects we consider are �xed e�ects then we will be interested in the speci�c

di�erences between the various treatments; these treatments and no other treatments. Our

results apply to ONLY these treatments. However, if the e�ects that we are considering

are classed as random e�ects then it is the variability in the population that we shall be

interested in.

15.1 Parameters

Variance components; variance between levels and within levels.

15.2 Example

Consider that we had recorded the weights of apples on each of 6 apple trees at Macdonald

Campus of McGill University. The trees were a random sample and are therefore considered

representative of this type of apple tree (variety) growing in the region (the St Lawrence

river valley). From each tree we randomly sample 4 or 5 apples and weigh each, see table

8.

Table 8: Example data

T1 T2 T3 T4 T5 T6

19.4 17.7 17.0 20.7 14.3 17.3

32.6 24.8 19.4 21.0 14.4 19.4

27.0 27.9 9.1 20.5 11.8 19.1

32.1 25.2 11.9 18.8 11.6 16.9

33.0 . . 18.6 14.2 20.8
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Our statistical model will be

Yij = µ+ treei + eij

This looks much like our CRD/One-way Analysis of Variance. It is, except that the

parameters of our model are slightly di�erent. We are not interested in estimating di�er-

ences amongst particular trees, rather we are interested in estimating the variance amongst

trees.

15.3 Terms in the model

Yij = the weight of the jth apple from the ith tree

µ = the overall mean apple weight

treei = the random e�ect of the ith tree on the weight of an apple,

treei ∼ N(0, σ2
t )

eij = the random residual e�ect speci�c to the jth apple from the ith tree

eij ∼ N(0, σ2
e)

15.4 Parameters of the model

µ (�xed e�ect), and σ2
trees and σ2

e (random e�ects variance components).

treei ∼ N(0, σ2
trees) and eij ∼ N(0, σ2

e)

15.5 Expectations of Mean squares

For Model I, �xed e�ects, the Mean Square tests whether there are any treatment ef-

fects. For Model II, random e�ects, the Mean Square tests whether there is a statistically

signi�cant e�ect of trees σ2
t , i.e. whether σ

2
t > 0.
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Table 9: E(M.S.)

Source of Variation df Model I Model II

Treatments t-1 σ2 + r1
∑
(ti − t̄)2/(t− 1) σ2 + r1σ

2
t

Residual t(r-1) σ2 σ2

15.6 Estimation of variance components from E(MS)

We can calculate σ2
t from (Mean Square Trees - Mean Square Error) divided by the 'ef-

fective' number of apples per tree, r1. If the experiment is completely 'balanced' the r1 is

equal to the number of apples per tree, if we have an 'unbalanced' design the r1 is always

a bit less than the actual average number of apples per tree (see Steel, Torrie and Dickey,

Ch 7.5). In this example r1 = 4.6571.

For a simple One-way ANOVA, such as the above example, the general formula for

computing r1 is given as

r1 = k1 =

(
i=t∑
i=1

ni −
∑i=t

i=1 n
2
i∑i=t

i=1 ni

)
/(t− 1)

where ni equals the number of 'replicates', or subsamples, for the ith group, in the above

example it means the number of apples on the ith tree, and there are t trees.

σ2
t = (162.534− 12.778)/4.6571 = 32.156

Thus σ2
t = 32.156 and σ2

e = 12.778, and σ2
p = σ2

t + σ2
e .

Thus σ2
p = 32.156 + 12.778 = 44.934

Therefore the variation between trees σ2
t equals 32.156/44.934, 71.56%, of the total

variation in apple weight. Thus we could conclude that there are major di�erences between

trees in the weight of their apples and that within trees the apples are relatively uniform.

This would be good news if we were an apple tree breeder; it would suggest that a priori

there would be possibilities of selecting better trees and improving apple weight.
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With a balanced design it is relatively simple to compute the variance components.

However, if the design is unbalanced it is more tedious, and more easily left to SAS!

15.7 Using SAS/GLM with a random e�ect

USING SAS/PROC GLM

data oneway;

input tree y;

cards;

1 19.4

.

.

.

6 20.8

;

proc glm;

classes tree;

model y = tree;

random tree;

run;

SAS will compute the coe�cent(s) of the expectation of the Mean Squares.

NOTE: Whilst PROC GLM will compute the Expectations for Mean Squares when we

give the RANDOM option ALL analyses are carried out assuming a �xed e�ects model.

Thus SAS/PROC GLM is in fact schizophrenic when the RANDOM statement is used.

For anything other than simple one way analysis with equal numbers in each and every

class such analyses are in fact suboptimal and one should be using mixed models, e.g.

PROC MIXED.

15.8 Using SAS/MIXED

USING SAS/PROC MIXED

111



data oneway;

input tree y;

cards;

1 19.4

.

.

.

6 20.8

;

proc mixed;

classes tree;

model y = ;

random tree;

run;

15.9 Reasons for our interest in random e�ects

Why is it of interest to us to estimate variance components for a random e�ect?

1) To know the between group and within group variance. This would give us a priori

evidence as to whether there are di�erences between groups (trees) and hence whether

selection might be possible.

2) We need to know these variances if we are planning experiments, to use as our

[appropriate] variance estimate in the formulae for computing sample size.

3) These variances may be biologically interesting; they may suggest interesting future

research to look at why the between group di�erences exist, i.e. what are the di�erences

between the trees that results in them producing apples of di�erent weights?

4) We shall, if we have random e�ects in our statistical model, need to account for

these in our tests of �xed e�ects, both in terms of the structure of the statistical model,

and also in terms of the degrees of freedom for our signi�cance tests. We cannot simply

say �Oh, it is random, hence we can ignore it�.
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16 Multiple Comparisons

16.1 Issues related to multiple comparisons

References

Steel, Torrie and Dickey, Chapter 8

Multiple Comparisons and Multiple Tests using the SAS System, Westfall, P. H., et al.

There are two main issues related to multiple comparisons and tests; they are, �rstly,

the question of whether the comparison(s) is/are pre-planned or not, and secondly the fact

that one is making multiple comparisons.

If we have an experiment involving 2 treatments, then there is only 1 comparison to

make, and a simple t-test or F-test is appropriate, e�cient and su�cient. If we have

more than 2 treatments (suppose we have 6 treatments) then there will be 6*(6-1)/2 = 15

possible comparisons amongst the 6 treatments means. However, there are only 5 degrees

of freedom for treatments, that is to say that there are a maximum of 5 comparisons which

are linearly independent of oneanother. Only if we decided beforehand EXACTLY which

comparison to make would it have a 'real' probability of accepting/rejecting Ho at the

probability we thought we were doing (see STD Ch 8.2 for more discussion on this point).

Suppose that we have 1 test to make; we can use a t-test (or equivalently an F-test).

If Ho (the Null Hypothesis, of no real e�ect) is true, then there is a 0.95 probability of

accepting this and a 0.05 probability (chance) of erroneously rejecting it and thinking

(mistakenly) that there is a real e�ect.

Suppose that we have 2 tests to make; further suppose that the Null Hypothesis (Ho) is

true in both cases. We should want to accept the Ho for both; the probability of accepting

(not rejecting) both is therefore 0.952; consequently the probability of rejecting at least 1

of the comparisons is 1 − 0.952 = 0.0975. This is not at all our 5% probability that we

might have thought that we were testing at! See table 10.

What is being shown here is that the Family Wide Error rate (FWE) (i.e. overall) is
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Table 10: Multiple comparisons

Comparisons Probability

1 0.05

2 0.0975

3 0.1426

4 0.1855

5 0.2262

.

.

10 0.4013

not at all 5%; even though any one test, if it was pre-planned and linearly independent

of all others, has a Comparison Wide Error rate (CWE) of 5 %. Note, however, in STD

Ch 8.2, in the discussion of least signi�cant di�erences (lsd) it is stated that lsd is a valid

procedure for pre-planned comparisons; this is passé. It does nothing for the multiple

comparison problem and hence FWE rate. So, lsd is just that, a mind-altering drug to be

avoided.

16.2 Bonferroni's Test and Sidak's Inequality

Pr (A1 or A2 or A3 .. or Al) ≤ Pr(A1) + Pr(A2) + ... + Pr(Al)

Thus, if we are making v comparisons, then use an adjusted p-value, p̃, of α/v; so if our

probability level is α = 0.05 (5%) and we have 10 possible tests, then use 0.05/10 = 0.005

as the adjusted probability level for accepting/rejecting whether an e�ect is statistically

signi�cant (at a FWE rate of 5%).

SAS functions which are useful, �nv(), probf(), tinv() and probt().

So, suppose that we want the critical t-value for contrasts where we have s=6 'treat-

ments' (as per our CRD experiment), i.e. v = 6*(6-1)/2 = s*(s-1)/2 = 15, for an α =

0.05.
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p̃ = 0.05/15 = 0.003333

The numerator degrees of freedom, ndf , = 5, and the denominator degrees of freedom,

ddf , = 22. The following SAS code will produce the F-value and t-value corresponding to

the (adjusted) probability level of 0.003333. Note, that since tinv() gives the probability

of a larger t value (1-tailed test/sign is important) and we want the t-statistics pertaining

to a 2-tailed test (absolute di�erence) then we have to divide the adjusted probability by

2 to get the value that we use in the tinv() function. Thus 0.003333/2 = 0.001666, and we

use 1 - the value (i.e. 1 - 0.001666), since we need the critical t-value for the probability

of getting a larger (absolute) t-value by chance alone.

data critvals;

input pvalue ndf ddf;

F = finv(1-pvalue, 1, ddf);

t = tinv(1-pvalue/2, ddf);

cards;

0.003333 5 22

;

proc print data=critvals;

run;

We obtain the following results, for the F-value and t-value:

tadj = 3.29

Fadj = 10.824

This compares with the t-value of 2.074 for the 5% probability level tabulated in STD.

Thus we need a calculated t-value of at least 3.29 before we should declare the di�erence

between 2 treatment means to be signi�cant if we are going to examine the di�erences

amongst the treatment means. Similarly, we can construct a Con�dence Interval (C.I.) as
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being this tabulated t-value (of 3.29) × the standard error (s.e.) of the di�erence between

the two means. Bonferroni's test is valid for comparisons amongst pairs of treatment means,

IFF the comparisons were pre-planned. For v ≥ 20 it is ine�cient and too conservative,

and we would be better o� to make use of Sche�é's Test. Note, v ≥ 20 corresponds to

s = 7 treatments = 7*6/2 = 21 comparisons amongst all pairs of means. So, for up to,

and including, 6 treatments (levels) we can use Bonferroni's test to compare the treatment

means, for 7+ treatments (levels) it will be more e�cient to use Sche�é's Test. When using

SAS/GLM we can easily make use of Boneferroni's test, even without any complicated hand

calculations or even any subsequent use of SAS (either the data step or IML). Recall that

using Boneferroni's test we need an adjusted probability level, for example with our 6

treatments (15 tests), then we need an adjusted probability level of 0.05/15 = 0.00333.

If we compute di�erences between treatments using the ESTIMATE statement in GLM,

SAS computes the estimate, its standard error, the calculated t-value, and the probability

of obtaining such a large t-value by chance under Ho. Thus, we only have to look whether

the probability is less than 0.003333 to decide whether to reject Ho under Boneferroni's

test!!!

16.3 Sche�é's Test, STD Ch 8.5

If we want linear combinations, not just di�erences amongst individual means, then Bon-

ferroni's test is not appropriate, because v is now e�ectively ∞; and hence Bonferroni's

test (using a probability level of α/v) is N.B.G.!!! However, Sche�é's Test is valid for all

and any linear combinations of means.

(ȳi − ȳj)

k′b̃ = contrast = estimate

s.e. =
√
k′(X ′X)−kσ2

critical di�erence = s.e.k′b̃ ∗
√
(s− 1)Fα,s−1,dfe

e.g. Consider our One-way ANOVA, CRD, experiment (Section 11.5, 14.1 and 14.2) where

we had 6 treatments, => s = 6.
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The d.f.e. = 22.

At the 5% level F5%,5,22 = 2.66

Consider that we wish to compare the 5 inoculants against the mixture, (trt1 + trt2 +

trt3 + trt4 + trt5)/5− trt6. The estimate = 1.35 and the standard error is 1.77

Thus the critical di�erence is 1.77 ∗
√
5 ∗ 2.66 = 6.45

if the di�erence is greater than 6.45 we can reject the null hypothesis at the 5% level

and accept that there is a real di�erence between the average of the inoculants and the

mixture. Note; this CD is equivalent to a Con�dence Interval and can be used in this way;

indeed it should be so used when we are faced with a multiple comparison situation.

R A simple t-test would have concluded that a critical di�erence of 2.074 * 1.77 (3.67)

was su�cient.

More conservative!!! Important.

Sche�é's test is not the only multiple comparison test available

SNK Student-Newman-Keul's, dubious

TUKEY

WALLER Waller - if you are (sure) you are a Bayesian

Duncan's test - absolutely verboten, passé, n.b.g.

We can use Sche�é's test with SAS as an option on the Least Squares Means statement

(and similarly with Bonferroni's test).

USING SAS/PROC GLM

proc glm;

classes trt;

model y = trt;

lsmeans trt/stderr pdiff adjust=scheffe;

lsmeans trt/stderr pdiff adjust=bon;

run;
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USING SAS/PROC MIXED

proc mixed;

classes trt;

model y = trt;

lsmeans trt/pdiff adjust=scheffe;

lsmeans trt/pdiff adjust=bon;

run;

Note: for proc mixed we do not have the STDERR option, proc mixed automatically

produces the standard errors for the Least Squares Means, whereas for proc glm we have

to explicitly request them.
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17 Partitioning Sums of Squares, Linear, Quadratic, etc

See also the Statistical Methods II Web site section, �Classi�cation or Regression�.

When looking at Multiple Regressions (Section 2) we were examining the e�ect of

Quantitative levels of the X variables on the value of Y. Likewise, when looking at a One-

Way, CRD (Section 11.5), we were examining the e�ect of Qualitative levels of a Factor

(Diet) on the value of Y. We had labelled the 6 diets as: Diet 1, Diet 2, Diet 3, Diet 4 ,

Diet 5 and Diet 6 and this was the order that we used when constructing our design matrix

(X); although, as noted in Section 14.7, the order is arbitrary.

Sometimes we have Factors which are Quantitative in nature, but which can be con-

sidered as either Quantitative or Qualitative. For example, suppose that we were looking

at the e�ects of 5 di�erent diets which we are feeding to dairy cows. The diets consist of

various amounts of a protein supplement (Table 11).

Table 11: Diets being fed to dairy cows

Diet Amount of protein

supplement fed (kg)

1 2

2 3

3 4

4 5

5 6

We have 15 cows and we randomly assign them to the 5 diets, 3 cows per diet. Each

cow is individually housed and fed, such that cows cannot interfere with one another; we

have a simple, straightforward CRD. We record the milk production of each cow, shown

in Table 12.

We could analyse these 5 diets as 5 di�erent Qualitative levels and analyse this as

a CRD. Alternatively, we could also treat this as a Regression problem, regressing milk

yield (Y) on the amount of protein supplement in the diet. Which model is better, or

most appropriate, or most parsimonious? Do we/should we consider the 5 Diets to be
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Table 12: Milk production

Diet Cow Yield (kg)

1 1 11.1

1 2 16.6

1 3 15.6

2 4 18.1

2 5 22.8

2 6 21.6

3 7 25.2

3 8 30.1

3 9 26.7

4 10 28.6

4 11 33.7

4 12 35.8

5 13 34.5

5 14 31.4

5 15 33.6

quite separate, distinct 'levels' with whatever e�ect they each have, or are they simply

the amounts/levels that we chose and which could best be described by a quantitative

relationship??

If we analyse this as a CRD; the statistical model would be:

Yij = µ+Dieti + eij

17.1 Hypotheses

For the Model over and above the mean (our Diets), R(Diet|µ), our Null Hypothesis (Ho)

is that there is no di�erence between the e�ects of the �ve diets, i.e. they are all equal,

vs. the Alternative Hypothesis that there are di�erences, i.e. they are not all equal.

Statistically we can write this as:
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Ho


d1 − d2

d1 − d3

d1 − d4

d1 − d5

 =


0

0

0

0

 and HA


d1 − d2

d1 − d3

d1 − d4

d1 − d5

 ̸=


0

0

0

0



17.2 Analysis of Variance

Source df SS MS F − ratio

Total, N = 15 Y ′Y

TSS = 10750.54

Model, r(X) b̃′X ′Y

SSR = 5 = 10676.333 2135.3 287.75

= R(µ,Diet)

Mean, 1 Nȳ2 9902.21 1334.41

C.F. = 9902.21

Model, after r(X)− 1 774.123 193.531 26.08∗∗∗

the mean, SSRm = 4

R(Diet|Mean)

Error, N − r(X) 74.2066 7.42066

SSE = 10

The tabulated F-value for the model over and above the mean, i.e. the e�ects of Diets,

is

F4,10,5% = 3.48

Fcalc > Ftabulated

26.08 > 3.48
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Therefore we can reject Ho, and accept HA, that the e�ects of the Diets are not all

equal.

17.3 SAS code for Classi�cations

data cows;

input id diet kgsup my;

cards;

1 1 2 11.1

2 1 2 16.6

3 1 2 15.6

4 2 3 18.1

5 2 3 22.8

6 2 3 21.6

7 3 4 25.2

8 3 4 30.1

9 3 4 26.7

10 4 5 28.6

11 4 5 33.7

12 4 5 35.8

13 5 6 34.5

14 5 6 31.4

15 5 6 33.6

;

proc glm data=cows;

class diet;

model my = diet/xpx inverse;

estimate 'mu+d1' intercept 1 diet 1 0 0 0 0;

estimate 'mu+d2' intercept 1 diet 0 1 0 0 0;

estimate 'mu+d3' intercept 1 diet 0 0 1 0 0;

estimate 'mu+d4' intercept 1 diet 0 0 0 1 0;

estimate 'mu+d5' intercept 1 diet 0 0 0 0 1;

contrast 'C+Q' diet -1 2 0 -2 1,

diet 1 -4 6 -4 1;

lsmeans diet/stderr;

run;
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17.4 Fitted values

To estimate the �tted values for Diet 1 we need,

k′ = ( 1 1 0 0 0 0 )

k′b̃ = 14.433± 1.573

To estimate the �tted values for Diet 2 we need,

k′ = ( 1 0 1 0 0 0 )

k′b̃ = 20.833± 1.573

To estimate the �tted values for Diet 3 we need,

k′ = ( 1 0 0 1 0 0 )

k′b̃ = 27.333± 1.573

To estimate the �tted values for Diet 4 we need,

k′ = ( 1 0 0 0 1 0 )

k′b̃ = 32.700± 1.573

To estimate the �tted values for Diet 5 we need,

k′ = ( 1 0 0 0 0 1 )

k′b̃ = 33.167± 1.573

See the SAS statements and output for the ESTIMATE statements and the results for

the �tted values of (mu+di); these are commonly called Least Squares means. Note that

this term should more correctly be called estimates of means calculated using the method
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of least squares!. SAS calls these lsmeans, and LSMEANS is an option statement in PROC

GLM (and many other SAS procedures).

We can see that the �tted values for all the observations pertaining to Diet 1 have the

same estimate/value, and similarly for the other levels of diets.

We can see that the standard errors of the estimates are the same for all Diets, because

all diets have the same number of observations (cows) and hence the same amount of

'information' (in the statistical sense).

17.5 Least Squares Means

The LSMeans for the 5 diets are:

Diet LSMeans s.e.

1 14.433 ± 1.573

2 20.833 ± 1.573

3 27.333 ± 1.573

4 32.700 ± 1.573

5 33.167 ± 1.573
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17.6 SAS Output, classi�cation model

The GLM Procedure

Class Level Information

Class Levels Values

diet 5 1 2 3 4 5

Number of observations 15

The GLM Procedure

Dependent Variable: my

Source DF Sum of Squares Mean Square F Value Pr > F

Model 4 774.1226667 193.5306667 26.08 <.0001

Error 10 74.2066667 7.4206667

Corrected Total 14 848.3293333

R-Square Coe� Var Root MSE my Mean

0.912526 10.60232 2.724090 25.69333

Source DF Type I SS Mean Square F Value Pr > F

diet 4 774.1226667 193.5306667 26.08 <.0001

Source DF Type III SS Mean Square F Value Pr > F

diet 4 774.1226667 193.5306667 26.08 <.0001

Contrast DF Contrast SS Mean Square F Value Pr > F

C+Q 2 7.77504762 3.88752381 0.52 0.6076
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Parameter Estimate Standard Error t Value Pr > |t|

mu+d1 14.4333333 1.57275413 9.18 <.0001

mu+d2 20.8333333 1.57275413 13.25 <.0001

mu+d3 27.3333333 1.57275413 17.38 <.0001

mu+d4 32.7000000 1.57275413 20.79 <.0001

mu+d5 33.1666667 1.57275413 21.09 <.0001

The GLM Procedure

Least Squares Means

diet my LSMEAN Standard Error Pr > |t|

1 14.4333333 1.5727541 <.0001

2 20.8333333 1.5727541 <.0001

3 27.3333333 1.5727541 <.0001

4 32.7000000 1.5727541 <.0001

5 33.1666667 1.5727541 <.0001
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If we plot the Least Squares Means we have the following picture:
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Yield

1 2 3 4 5

Diets

x

x

x

x x

There is an obvious pattern of an increasing milk yield with increasing Protein sup-

plement in the diet. Is there a 'curvi-linear' trend or just a simple linear tend, or is the

classi�cation model signi�cantly better than a regression model? We cannot determine

this yet, but that is what we want to address (and know).

With 5 diets we have 4 degrees of freedom for Diets. If we think about the 5 Least

Squares Means from a geometry perspective we know that with 5 points we can �t a 4th

order polynomial that will provide a perfect �t through the �ve points. Thus a 4th order

polynomial (an equation of the form Y = b0 + b1x1 + b2x
2
1 + b3x

3
1 + b4x

4
1 + e) is equivalent

to �tting the 5 diets as 5 classes (levels); it would provide exactly the same �tted values

and the SAME Sums of Squares (SSRm) (try it and see).

We can therefore partition the Sums of Squares for Diets, and their 4 degrees of freedom,

into the 4 e�ects due to Linear, Quadratic, Cubic and Quartic polynomial regression e�ects.

Why? We want to see if there is any indication of a Linear e�ect, or a Quadratic

e�ect, or a [Cubic e�ect+Quartic e�ect]. It may be di�cult to justify, from a biological

viewpoint, anything beyond a quadratic e�ect. However, if we use orthogonal polynomials,

which are independent of oneanother, then we can test whether there is a statistically
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signi�cant improvement in going from (for example) Linear and Quadratic e�ects to 5

classes (equivalent to L, Q, C and Q regressions). Note, we are NOT interested in Cubic

or Quartic e�ects per se, we only want to see if the classi�cation e�ect has a signi�cant

improvement to the �t of the overall model, over and above Linear and/or Quadratic

regressions. Basaically we are �tting a complete model, with 4 degrees of freedom for

Diets and we want to see which path to take, that with 5 levels (4 d.f.) or whether a

simpler regression model is the path to explore.

We can use orthogonal contrast to divide up the Sums of squares for Diets. Note, this

is true, if and only if, there is an equal 'spacing' between the quantitative factor levels that

we are considering, which is true in this example. If it was not true then we would need

to use the 'over-parameterized model' approach (see section 17.9).

For a linear regression we can set up the coe�cients of the 5 classes e�ects as:

Diets D1 D2 D3 D4 D5

Linear -2 -1 0 +1 +2

These give us a linear progression from the �rst diet to the �fth diet. We can set up

the coe�cients for the Quadratic e�ect as:

Diets D1 D2 D3 D4 D5

Quadratic 2 -1 -2 -1 +2

Similarly, the cubic and quartic e�ects coe�cients are:

Diets D1 D2 D3 D4 D5

Cubic -1 2 0 -2 +1

Quartic 1 -4 6 -4 1

Note that each of these 4 e�ects (L, Q, C and Q) are orthogonal to oneanother. We

can see that they are orthogonal since k
′
ikj = 0.
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Since the Cubic and Quartic contrasts are independent of the other e�ects they serve

to test whether the 4 degrees of freedom for the 5 classes (or the 4th order polynomial)

provides a better �t than Linear and Quadratic regressions, i.e. overand above Linear and

Quadratic regressions.

Note, the above statements are true, and only true, if the spacing between diets/treatments

is equal, i.e. Diet 1 (2 kg), Diet 2 (3 kg), Diet 3 (4 kg), Diet 4 (5 kg) and Diet 5 (6 kg) all

di�er by increments of 1 kg. If the spacings between levels are not equal then constructing

the appropriate SAS CONTRAST coe�cients becomes 'di�cult' !

Thus, to determine whether a classi�cation model (with 5 levels, 4 d.f.) is necessary

or not, or whether a simpler quantitative model (which could have linear and quadratic

e�ects) is su�cient we need to see whether there is any improvement (signi�cant) due

to the e�ects over and above the linear and quadratic, i.e. the cubic and quartic, i.e.

R(C+Q|µ, L, Q), thus we want to test whether they add statistically signi�cantly to the

goodness-of-�t of the model. In words, our Null Hypothesis (Ho) is that the Cubic &

Quartic components together have no e�ect; our Alternate Hypothesis (HA) is that they

do have an e�ect.

Ho

 C

Q

 =

 0

0

 ≡ HA

 b3

b4

 =

 0

0



vs.

Ho

 C

Q

 ̸=

 0

0

 ≡ HA

 b3

b4

 ̸=

 0

0



17.7 SAS CONTRAST code

/* SAS code for L+Q regressions */

contrast 'Diets, L+Q' Diet -2 -1 0 1 2,

Diet 2 -1 -2 -1 2;
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/* SAS code for the C+Q effect, over and above the L+Q */

contrast 'Diets, C+Q' Diet -1 2 0 -2 1,

Diet 1 -4 6 -4 1;

If we use these contrast statements we obtain the following, for the Marginal e�ect of

the Cubic and Quartic e�ects (combined, since we have no interest in them individually,

only as the 'over and above regressions' e�ect):

E�ect d.f. S.S. M.S. F-ratio Pr >F

Diets 4 774.123 193.531 26.08 .0001

Diets, C+Q 2 7.775 3.8875 0.52 n.s.s.

The contrast of the Cubic + Quartic is R(b3, b4|b0, b1, b2) and is not statistically signif-

icant; so we shall accept Ho. Thus we would conclude that �tting Diets as 5 classes does

not provide a signi�cantly better �t that a more simple (parsimonious) model with just

Linear and Quadratic regressions on the amount of protein in the diet.

Conclusions. We accept Ho, that the Cubic and Quartic components are not statistically

signi�cant and hence the model with 5 treatment levels (of Diet) (qualitative model) is not

demonstrably better than the model with linear and quadratic regressions (although from

these analyses so far we cannot tell if the quadratic component of a quantitative regression

model would be signi�cant). So, we would then re-analyse as a multiple regression model

with Linear and Quadratic regressions, and proceed.

17.8 Coe�cients for Orthogonal Polynomials

Linear, Quadratic & Higher components. Subdivide Sums of Squares for an e�ect into

Linear, Quadratic, etc. See STD Ch 15.7 P386+
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treatments Degree T1 T2 T3 T4 T5

of Polynomial

2 1 -1 +1

3 1 -1 0 +1

2 +1 -2 +1

4 1 -3 -1 +1 +3

2 +1 -1 -1 +1

3 -1 +3 -3 +1

5 1 -2 -1 0 +1 +2

2 +2 -1 -2 -1 +2

3 -1 +2 0 -2 +1

4 +1 -4 +6 -4 +1

6 1 -5 -3 -1 1 3 5

2 5 -1 -4 -4 -1 5

3 -5 7 4 -4 -7 5

4 1 -3 2 2 -3 1

5 -1 5 -10 10 -5 1

If one does not have equally spaced treatments (and even if one does) it is always

possible to �t the linear and quadratic regressions and in addition to �t the classi�cation

variable after the regressions. In this way one 'automagically' obtains the additional e�ect

due to the extra classes over and above the regression e�ects.

17.9 Over-parameterized model (GLM)

To �t an over-parameterized model we have to have a regression variable AND a classi�-

cation variable to �t together in our model. When we read in our data set we had read in

an additional variable, kgsup, which we have not so far used; now we shall;

proc glm data=cows;
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class diet;

model my = kgsup kgsup*kgsup diet;

run;

This is a model with the treatment (Diet e�ect) �tted as 2 di�erent e�ects, Diet, as a

classi�cation e�ect, and kgsup as a quantitative regression e�ect, as Linear and Quadratic

regressions.

The statistical model will be

Yij = µ+ b1Xij + b2X
2
ij +Dieti + eij

where Xij is the amount of protein supplement fed to the jth cow on the ith diet, and

b1 and b2 are, as for our multiple regression type models, the regression coe�cients for the

regression of milk yield on Kg of supplement and Kg2.

Then the Sums of Squares for Diet, over and above the linear and quadratic regressions,

will have 2 degrees of freedom (4 - 2 = 2) and will correspond to the Sums of Squares

obtained using the orthogonal contrasts method for the Marginal e�ect over and above the

Regressions.
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17.10 SAS Output, over-parameterized model

The GLM Procedure

Class Level Information

Class Levels Values

diet 5 1 2 3 4 5

Number of observations 15

The GLM Procedure

Dependent Variable: my

Source DF Sum of Squares Mean Square F Value Pr > F

Model 4 774.1226667 193.5306667 26.08 <.0001

Error 10 74.2066667 7.4206667

Corrected Total 14 848.3293333

R-Square Coe� Var Root MSE my Mean

0.912526 10.60232 2.724090 25.69333

Source DF Type I SS Mean Square F Value Pr > F

kgsup 1 730.1333333 730.1333333 98.39 <.0001

kgsup*kgsup 1 36.2142857 36.2142857 4.88 0.0516

diet 2 7.7750476 3.8875238 0.52 0.6076

Source DF Type III SS Mean Square F Value Pr > F

kgsup 0 0.00000000 . . .

kgsup*kgsup 0 0.00000000 . . .

diet 2 7.77504762 3.88752381 0.52 0.6076
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17.11 Interpretation of over-parameterized model

Note several things about these results, as compared with those from the classi�cation

model. The Sums of Squares for the Model, Mean and Model over and above the Mean,

and the Residual have not changed. There is no new 'information' we are just dividing up

the Sums of Squares for the e�ect of diet di�erences into a quantitative component, and a

qualitative component over and above the quantitative component.

Note that the Type III Sums of Squares, the Marginal Sums of squares, for Diet have

2 degrees of freedom (4 d.f. from the di�erences between diets - the 2 d.f. acccounted for

by the Linear and Quadratic regressions). The Marginal Sums of Squares foe (Diet|µ,L,Q)
are 7.7750, EXACTLY as for the orthogonal contrast for the [Cubic+Quartic].

Note that the Type III degrees of freedom and Sums of Squares for kgsup and kgsup2

are both Zero. This is because

R(b1|µ, diet) ≡ R(b1|µ, b1, b2, b3, b4)

which is attempting to �t b1 after already �tting b1 (implicitly in the diet classi�cation

e�ect), and hence there is nothing left to �t, => d.f.= 0 and SSb1|diet = 0. Likewise for

the degrees of freedom and Sums of Squares for kgsup*kgsup.

Thus our conclusions agree with those from the orthogonal contrasts model. This

method of over-parameterizing the model will always work, whereas the orthogonal con-

trasts model is only valid forthe case of equal interval spacings. In addition, if there

are a large number of levels it can become quite complex to obtain all the necessary

coe�cients for orthogonal contrasts. Thus, it is simpler, and always valid, to use the

over-parameterized model.

17.12 Simpli�cation of over-parameterized model

Since we have determined that the 2 additional degrees of freedom, for the classi�cation

model, did not add signi�cantly to the goodness-of-�t of the model, we shall drop the clas-
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si�cation approach and consider a regression model, with linear and quadratic regressions

on the amount of protein supplement fed (kgsup).

Thus we shall next try the following statistical model:

Yi = bo + b1Xi + b2X
2
i + ei

The �rst step will therefore be, just as when we started looking at multiple regressions,

to determine whether the quadratic e�ect, b2, is statistically signi�cant, using whatever

probability level we are using as our criterion for accepting or rejecting Ho; we shall use

a 5 % probability level. If we look at the results of the GLM analysis, shown in the

section 17.13, we see that the probability for kgsup2 is 0.040 and the calculated F-value is

5.30. Thus, directly using the probability provided by GLM we shall conclude that b2 is

statistically signi�cantly di�erent from Zero. Similarly, if we look up the tabulated F-value

we �nd that it is 4.75; thus since our caculated value exceeds the tabulated value we would

reject Ho.

Thus, since the quadratic e�ect is statistically signi�cant it is neither necessary, nor

sensible to examine the statistical signi�cance of the linear component; we SHALL retain

it in the model since it is necessary. So we have determined that the e�ect of protein

supplement has a quantatitive e�ect, and that it is curvi-linear quadratic in nature. Our

best estimate of the regression equation will be:

Ŷ = −7.04 + 12.362 ∗Kgsupplement − 0.9286 ∗Kg2supplement
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17.13 SAS Output from regression model

The GLM Procedure

Number of observations 15

The GLM Procedure

Dependent Variable: my

Source DF Sum of Squares Mean Square F Value Pr > F

Model 2 766.3476190 383.1738095 56.09 <.0001

Error 12 81.9817143 6.8318095

Corrected Total 14 848.3293333

R-Square Coe� Var Root MSE my Mean

0.903361 10.17296 2.613773 25.69333

Source DF Type I SS Mean Square F Value Pr > F

kgsup 1 730.1333333 730.1333333 106.87 <.0001

kgsup*kgsup 1 36.2142857 36.2142857 5.30 0.0400

Source DF Type III SS Mean Square F Value Pr > F

kgsup 1 98.13915829 98.13915829 14.37 0.0026

kgsup*kgsup 1 36.21428571 36.21428571 5.30 0.0400

Parameter Estimate Standard Error t Value Pr > |t|

Intercept -7.04000000 5.99840508 -1.17 0.2633

kgsup 12.36190476 3.26161055 3.79 0.0026

kgsup*kgsup -0.92857143 0.40331394 -2.30 0.0400
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17.14 Conclusion

So, in summary, the procedure that we can follow in determining which model is most

appropriate can be describing in the following table:

1. Fit a model to decide which path/route to take; a classi�cation model,

or a regression model.

Fit a Classi�cation Model Fit an over-parameterized model;

+ orthogonal contrasts. regressions+classi�cation (The Rest,

Partion Sums of Squares over and above regressions)

into Linear, Quadratic,

The Rest (i.e. Cubic, Quartic,

Quintic, etc)

Obtain Sums of Squares and Obtain Sums of Squares and

test of signi�cance test of signi�cance

of The Rest of The Rest

2. If the test of signi�cance of (The Rest) is s.s. THEN revert back to

a classi�cation model.

If the test of signi�cance of (The Rest) is n.s.s. then a classi�cation

model is not a better �t over and above a regression model. So, drop

the classi�cation model and proceed with a regression analysis.

3. Report your results, i.e. show that you considered and compared Regression

trends (Quantitative) and Classi�cation (Qualitative).
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18 Normality and Homogeneity of Variance

Bartlett's Test (STD Ch. 19.3, P480)

See also the Stats II Web page section about Normality and Homogeneity of Variances

(The Sequel!).

18.1 Requirements for Analysis of Variance

See Steel, Torrie and Dickey, Chapter 7.10. So far we have said that the data we are

analysing must have equal variances (i.e. the variances of each observation must be homo-

geneous ≡ lack of heterogeneity) and that the observations must be normally distributed.

These are quite important assumptions and requirements. When analysing data from an

experiment it is encumbant upon the researcher to check and verify these conditions.

18.2 Normality

We can test for normality by computing the 3rd and 4th moments about the mean. N.B.

if you have forgotten about this (from Statistical Methods I) the �rst moment about the

mean is simply the mean itself, the second moment about the mean provides us with

the variance (and standard deviation), the third moment about the mean measures the

skewness and the fourth moment about the mean measures the kurtosis (Snedecor and

Cochran, Statistical Methods, Ch 3.13 and 3.14).

PROC UNIVARIATE in SAS provides a test for normality, the W statistic. As an

example, consider that we have a group of pigs that we grow from weaning up to 100 days

of age and then we weigh them. The weights are given below, in Table X, for male and

female pigs, m and f respectively. However, the test for Normality is only valid when the

model Yi = µ+ ei applies to ALL experimental units, i.e. no �xed e�ects/treatments, etc!

Our Null Hypothesis is that the VARiable is Normally distributed, and our Alternate

Hypothesis is that the trait is not Normally distributed.
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sex Wt. sex Wt. sex Wt. sex Wt. sex Wt. sex Wt. sex Wt.

m 94.3 m 83.3 m 84.0 f 79.9 f 83.8 f 80.8 f 76.8

f 76.5 f 79.7 f 80.9 f 81.1 m 79.0 f 81.4 m 86.9

f 85.0 f 76.4 m 84.5 m 92.1 m 91.6 m 84.8 f 81.0

f 78.6 f 79.1 f 81.2 f 81.3 f 81.2 f 76.7 m 89.2

m 82.9 m 88.4 m 86.7 m 86.4 f 81.7 f 78.2 m 82.1

m 85.2 m 88.0 m 89.8 m 85.2 m 88.6 f 85.8 m 86.9

m 84.4 f 74.0 m 88.2 m 86.2 m 86.1 f 77.5 f 84.0

f 79.4 f 78.2 f 81.1 m 93.1 f 76.5 m 83.9 f 83.7

m 92.0 f 73.1 f 77.8 f 79.4 m 89.1 f 85.3 m 88.7

m 84.4 m 89.1 m 90.7 m 81.5 f 78.3 f 81.4 m 86.2

f 78.7 m 79.0 f 79.8 f 81.2 m 84.3 f 85.2 f 77.8

m 87.9 m 78.0 f 77.0 m 83.2 m 89.1 f 79.0 f 80.8

f 79.0 m 85.0 f 79.7 m 87.9 f 74.0 f 88.6 f 77.1

m 84.3 m 74.7 f 75.7 f 75.0 f 82.2 m 85.6 m 85.6

m 88.2 f 87.1 m 90.7 m 83.7 f 82.0 m 89.9 m 88.0

m 80.9 m 87.7 f 76.7 f 80.5 m 83.4 f 86.6 f 75.9

f 85.4 f 75.5 m 79.0 m 92.6 f 80.1 m 93.9 f 87.8

f 78.2 m 86.5 f 72.7 f 84.3 m 91.2 f 78.5 m 91.1

m 85.4 m 82.8 m 93.6 f 88.7 m 90.1 m 87.2 f 74.5

f 79.9 m 90.1 f 82.0 f 79.9 f 87.1 m 84.8 f 83.4

f 77.0 f 84.4 m 91.5 f 86.3 m 93.1 m 89.0 f 84.2

m 84.0 f 83.5 f 78.9 f 82.1 m 88.6 m 85.9 f 80.4

m 91.0 f 84.0 f 82.6 f 73.0 f 82.0 m 88.3 m 82.9

f 80.4 m 82.9 f 82.4 f 83.9 f 73.2 m 82.9 m 94.0

f 78.4 m 82.0 m 89.0 f 84.4 m 86.8 f 77.2 m 83.7

f 81.7 m 93.3 m 80.4 f 83.4 f 78.2 m 83.2 m 87.0

m 80.9 m 88.1 m 87.8 m 84.8 f 78.7 f 78.9 f 79.4

f 80.9 f 79.6 f 79.3 m 83.9 f 82.4 f 77.3 f 82.2

m 80.7 f 80.8 f 81.8 f 80.9

The following SAS code shows how to read the data for all pigs into a SAS data set

(pigs) and then subset the data into two new data sets, for male and female pigs.

USING SAS/PROC UNIVARIATE

data pigs; /* read weights for all pigs into data set pigs */
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input sex $ wt;

cards;

m 94.3

f 76.5

f 85.0

. .

. .

f 81.8

f 80.9

;

data mpigs; /* new data set to be male pigs only */

set pigs; /* copy from data set pigs */

if (sex eq 'm'); /* keep records only if sex = male */

run;

data fpigs; /* new data set to be female pigs only */

set pigs; /* copy from data set pigs */

if (sex eq 'f'); /* keep records only if sex = female */

run;

proc print data=pigs;

run;

proc print data=mpigs;

run;

proc print data=fpigs;

run;

proc univariate data=mpigs normal; /* test for normality */

var wt;

histogram wt;

run;

proc univariate data=fpigs normal;

var wt;

histogram wt;

run;

/* Alternatively */
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Table 13: Results of testing for Normality, sexes separately

sex W statistic Probability

m 0.979059 0.4974

f 0.97656 0.3390

proc sort data=pigs;

by sex;

run;

proc univariate data=pigs normal;

by sex;

var wt;

histogram wt;

run;

The W statistic and its associated probability gives us a test of whether we can accept

the Null Hypothesis that the data are from a Normal distribution or not. If the Probabil-

ity is less than our speci�ed (prior) cut-o� level then we reject the Null Hypothesis and

conclude that the data are NOT Normally distributed. For these two data sets, male and

female pigs respectively, we �nd that there is no evidence to reject the Null Hypothesis

that the data are Normally distributed, i.e. we can accept that the data are Normally

distributed.

We can see that both probabilities are greater than, for example, 0.05 (if we are using

5 % as our criterion for accepting/rejecting the Null Hypothesis). Thus we would conclude

that these data are Normally distributed; which is a quite acceptable conclusion for a

quantitative, growth-related trait.

If weight at 100 days in male and female pigs is Normally distributed when we look

at the weight in males and in females seperately, then it would be logical to assume that

together they would be Normal. Is this the case? If we take the same data and use PROC

UNIVARIATE on the original combined data (males and females together) we obtain a

W statistic of 0.984 and an associated Probability of 0.0205. Thus the results of a simple
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Table 14: Incorrect test for Normality, raw data

Tests for Normality

Test Statistic p Value

Shapiro-Wilk W 0.983706 Pr < W 0.0205

Kolmogorov-Smirnov D 0.06773 Pr > D 0.0238

Cramer-von Mises W-Sq 0.130714 Pr > W-Sq 0.0443

Anderson-Darling A-Sq 0.792007 Pr > A-Sq 0.0411

PROC UNIVARIATE analysis would tell us that it is UNLIKELY that this data (the

combined male and female weights) come from a Normal distribution! This seems to be

at variance with what we would intuitively presume, and in fact this is the case; the data

are Normally distributed, BUT the simple PROC UNIVARIATE test for Normality on the

combined data set is INCORRECT. It is incorrect because of the fact that we have not

considered the �xed e�ects (the sex e�ect) and this causes the results to be completely

invalid; the model for the above-mentioned swine data should include the sex e�ect, i.e.

Yij = µ+ sexi + eij. Thus we see that using PROC UNIVARIATE (which will ignore any

�xed e�ects) will be completely invalid. What should we do? What we need to test is

the distribution of the residuals (the eij's); thus we should use the residuals for testing for

Normality.

How can we, in general, obtain the residuals? Well we �rst of all have to �t a model

which is appropriate (the appropriate model, not just any old model!), and then output

from this the residuals, and then we can use these as the input to PROC UNIVARIATE.

So, for the above data, we consider that the appropriate model to describe the weight of

the piglets (male and female) would be:

Yij = µ+ sexi + eij

We could therefore �t the following model, using PROC GLM
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/* fit model wt = mu + sex + e

output to SAS dataset pigresids observations + yhat + ehat

*/

proc glm data=pigs;

class sex;

model wt = sex;

output out=pigresids p=yhat r=ehat;

run;

/* print out observations, so we can see what we've got */

proc print data=pigresids;

var sex wt yhat ehat;

run;

/* use dataset pigresids as input to proc univariate *

proc univariate data=pigresids normal; /* test for normality */

var ehat;

histogram ehat;

run;

If we want to use PROC MIXED the format for outputting the residuals and �tted

values (ehats and yhats respectively) is a little di�erent:

/* fit model wt = mu + sex + e

output to SAS dataset pigresids observations + yhat + ehat

*/

proc mixed data=pigs;

class sex;

model wt = sex/outp=pigresids;

run;

/* print out observations, so we can see what we've got */

proc print data=pigresids;

run;

/* use dataset pigresids as input to proc univariate *

proc univariate data=pigresids normal; /* test for normality */

var Resid;

run;
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Table 15: Correct test for Normality, residuals, after �tting sex

Tests for Normality

Test Statistic p Value

Shapiro-Wilk W 0.993547 Pr < W 0.5349

Kolmogorov-Smirnov D 0.03274 Pr > D 0.150

Cramer-von Mises W-Sq 0.026804 Pr > W-Sq 0.2500

Anderson-Darling A-Sq 0.225772 Pr > A-Sq 0.2500

From the above PROC GLM model, outputting the residuals and then testing for

Normality we obtain the following combined result:

We can see that the combined test of the residuals shows no evidence for the residuals

not being Normally distributed, the probability is 0.5349, substantially above our 5% or

1% 'cut-o�' level i.e. we can accept our Null Hypotheseis, which was that the errors ARE

Normally distributed, and that hence our ANOVA assumption is valid.
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18.3 Homogeneity of Variance

This is where the use of PROC MIXED in SAS really comes into its own. We can use

PROC MIXED to test for heterogeneity of variance and, if there is heterogeneity, to make

a correct analysis, accounting for the heterogeneous variances. If we look at most statistics

text books, such as STD, we �nd that a suitable test for heterogeneity is Bartlett's test

(STD, Ch 19.3). However, it is somewhat limited and is only suitable for quite simple

designs, for example One-way CRD models. In addition, if we use Bartlett's test and �nd

that the variances are heterogeneous then the recommendation is that a transformation

is necessary (STD Ch 9.16). What transformation and whether the transformation will

make the variances homogeneous is skated over. PROC MIXED will often allow us to

make a much better analysis accommodating the heterogeneity directly in the model,

an altogether desirable approach, since it obviates the necessity to �nd some (arbitrary)

transformation. We shall use the Completely Randomized Design data to illustrate the

test of heterogeneity of variance. The method that we shall use is �Maximum Likelihood�, a

very powerful technique. Basically, Maximum Likelihood says �What estimable parameters

would be most likely to give us the data that we have obtained?� We can hypothesise a

model, for example our CRD, with a mean 6 parameters for the treatment e�ects and

a residual variance. We compute the Likelihood (actually the natural logarithm of the

likelihood) associated with this model. We can �t another model, for example a model

with a mean, with 6 treatment e�ects (as before), and now a residual variance speci�c to

observations in each treatment group (i.e. 6 residual variances) and compute the liklihood

(as before actually the log likelihood). The model with the best [Ln] Likelihood is the best

�tting model. Fisher showed that -2 the di�erence in the Log Likelihood of models has a χ2

distribution. Thus we can use this for testing the change in goodness-of-�t between models.

PROC MIXED, allows us to use Restricted Maximum Likelihood (REML) methods.

See STD, Ch 22.3 for some comments about Maximum Likelihood.

18.4 SAS code for Homogeneity of Variance

We can �t a model with 1 common, pooled, homogeneous residual variance, and another

model with 6 di�erent residual variances and compared the �t of the models, via REML.

We read in the data and then use the REPEATED statement of PROC MIXED and the
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GROUP= option to �t di�erent residual variances for each GROUP.

data oneway;

input obs trt y;

sg = 1;

if (trt ge 4) then sg = 2;

cards;

1 1 19.4

2 1 32.6

3 1 27.0

4 1 32.1

5 1 33.0

6 2 17.7

7 2 24.8

8 2 27.9

9 2 25.2

10 3 17.0

11 3 19.4

12 3 9.1

13 3 11.9

14 4 20.7

15 4 21.0

16 4 20.5

17 4 18.8

18 4 18.6

19 5 14.3

20 5 14.4

21 5 11.8

22 5 11.6

23 5 14.2

24 6 17.3

25 6 19.4

26 6 19.1

27 6 16.9

28 6 20.8

;

/* fit 1 common residual */

proc mixed data=oneway;

classes trt;

model y = trt;
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run;

/* for 6 residuals, via the group statement

NOTE, for the repeated statement, the data MUST be sorted

in the order of the repeated variable, so run proc sort

by trt first

*/

proc sort data=oneway;

by trt;

run;

proc mixed data=oneway;

classes trt;

model y = trt;

repeated /group=trt;

run;

We have �tted 2 models, with the same �xed e�ects. The only di�erence is that in

the �rst model we �t 1 common error variance for all observations, since we have not

speci�ed anything else. Thus there is 1 degree of freedom associated with the 1 parameter

estimate of the error variance. For the second model we �t separate error variances for the

6 treatment groups, thus there are 6 d.f. associated with the 6 error variances. We can

compare the models to see whether there is an improvement in the goodness of �t of the

model by going from the 1 simple common variance to the more complicated model with

6 variances, one for each group. If we look at the [Schwartz's] Bayesian Criteria (BIC, or

SBC) for each model then the model with the smallest BIC value is the model which has

the best variance structure.1 This is the way to compare 2 models which have the same

�xed e�ects structure, but which di�er in the variance-covariance structure (the Random

E�ects).

This is all subject to the proviso that a BIC di�erence of less than 3 provides little

evidence for any real, substantive di�erence. A di�erence of 3 to 5 may be considered to

provide moderate evidence of real di�erences, whilst a BIC di�erence of 5 to 8 could be

1N.B. In versions of SAS up to v8.1 the criterion was the model with the highest SBC/BIC value was

the best. In SAS v8.2 and above the criterion has been reversed; lower is better; it is written �(lower is

better)�.
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considered to provide good evidence of di�erences, and BIC di�erences of more than 8 cold

be considered to be strong evidence of di�erences.

18.5 SAS output from PROC MIXED, homogeneous variances

The Mixed Procedure

Model Information

Data Set WORK.ONEWAY

Dependent Variable y

Covariance Structure Diagonal

Estimation Method REML

Residual Variance Method Pro�le

Fixed E�ects SE Method Model-Based

Degrees of Freedom Method Residual

Class Level Information

Class Levels Values

trt 6 1 2 3 4 5 6

Dimensions

Covariance Parameters 1

Columns in X 7

Columns in Z 0

Subjects 1

Max Obs Per Subject 28

Observations Used 28

Observations Not Used 0

Total Observations 28

Covariance Parameter Estimates

Cov Parm Estimate

Residual 12.7781
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Fit Statistics

-2 Res Log Likelihood 127.7

AIC (smaller is better) 129.7

AICC (smaller is better) 129.9

BIC (smaller is better) 130.8

Type 3 Tests of Fixed E�ects

E�ect Num DF Den DF F Value Pr > F

trt 5 22 12.72 <.0001

We should, at this stage, concentrate on the �Fit Statistics�, the -2LnL (127.7), AIC

(129.7) and BIC (130.8) values; note them. In and of themselves they tell us very little,

we need to compare them with the corresponding Fit Statistics from the next model; the

model with heterogeneous residual variances.

18.6 SAS output from PROC MIXED, heterogeneous variances

(6)

The Mixed Procedure

Model Information

Data Set WORK.ONEWAY

Dependent Variable y

Covariance Structure Variance Components

Group E�ect trt

Estimation Method REML

Residual Variance Method None

Fixed E�ects SE Method Model-Based

Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

trt 6 1 2 3 4 5 6
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Dimensions

Covariance Parameters 6

Columns in X 7

Columns in Z 0

Subjects 28

Max Obs Per Subject 1

Observations Used 28

Observations Not Used 0

Total Observations 28

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 127.69374108

1 1 111.40787380 0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Group Estimate

Residual trt 1 33.6420

Residual trt 2 18.9800

Residual trt 3 22.0300

Residual trt 4 1.2770

Residual trt 5 2.0380

Residual trt 6 2.5650

Fit Statistics

-2 Res Log Likelihood 111.4

AIC (smaller is better) 123.4

AICC (smaller is better) 129.0

BIC (smaller is better) 131.4
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Table 16: Comparison of Full and Reduced models

Parameters -2LnL AIC BIC

1 common variance, σ2
e -2LnLr = 127.7 129.7 130.8

6 residual variances, σ2
ei

-2LnLf = 111.4 123.4 131.4

i = 1,..,6

2LnLf - 2LnLr 16.3

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

5 16.29 0.0061

Type 3 Tests of Fixed E�ects

E�ect Num DF Den DF F Value Pr > F

trt 5 22 19.53 <.0001

We shall consider the �rst model, with 1 common pooled homogenous residial variance

to be the 'Reduced model', and the second model with more parameters (6 residual vari-

ances) to be the 'Full model'. If we look at the output (-2LnL's) from the two models

(see table 16) we see that the di�erence in -2 log likelihood is 16.3 (127.7-111.4). From

standard maximum likelihood theory (all give thanks to Fisher!) we know that this di�er-

ence has a χ2 distribution. Thus, we can see that the degrees of freedom for this χ2 are

equal to the di�erence in the number of parameters (of the variance components for the

two models), i.e. 6-1=5. Therefore, we compare our χ2
calc (16.3) against the χ2

tab for 5

degrees of freedom and our speci�ed probability level. If we choose to use our ubiquitous

5% probability level we �nd that the tabulated χ2 is 11.1. Our calculated χ2 of 16.3 is

greater than the tabulated value, so we can reject the Null Hypothesis, which is that the

variances in the 6 groups are homogeneous. So we shall accept the Alternate Hypothesis

that they are heterogeneous.

If we look at the residual variances (see Table 17) we can see that there appears to be a

pattern, the �rst 3 treatment groups have residual variances somewhat higher than those

of the other treatment groups. Perhaps we do not need 6 residual variances, but could
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Table 17: Residual variances, by treatment

Treatment Variance

1 33.642

2 18.980

3 22.030

4 1.277

5 2.038

6 2.565

have a model with 2 residual variances, one for treatments 1, 2 and 3, and another residual

variance for treatments 4, 5 and 6.

When we read the data in, we created a new variable (SG) with a value of 1 or 2

depending upon whether the treatment was less than or equal to 3 or greater. Now we can

use this to specify a grouping as:

18.7 SAS code for 2 Residual Variances

/* for 2 residuals, via the group statement,

NOTE, for the repeated statement, the data MUST be sorted

in the order of the repeated variable, so run proc sort

by sg first

*/

proc sort data=oneway;

by sg;

run;

proc mixed data=oneway;

classes trt sg;

model y = trt;

repeated /group=sg;

run;
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18.8 SAS output from PROC MIXED, heterogenous variances (2)

The Mixed Procedure

Model Information

Data Set WORK.ONEWAY

Dependent Variable y

Covariance Structure Variance Components

Group E�ect sg

Estimation Method REML

Residual Variance Method None

Fixed E�ects SE Method Model-Based

Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

sg 2 1 2

trt 6 1 2 3 4 5 6

Dimensions

Covariance Parameters 2

Columns in X 7

Columns in Z 0

Subjects 28

Max Obs Per Subject 1

Observations Used 28

Observations Not Used 0

Total Observations 28

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 127.69374108

1 1 112.20712088 0.00000000
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Table 18: Comparison of Various models

Parameters -2LnL AIC BIC

1 common variance, σ2
e 127.7 129.7 130.8

2 residual variances, σ2
e1
, σ2

e2
112.2 116.2 118.9

6 residual variances, σ2
ei

111.4 123.4 131.4

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Group Estimate

Residual sg 1 25.7598

Residual sg 2 1.9600

Fit Statistics

-2 Res Log Likelihood 112.2

AIC (smaller is better) 116.2

AICC (smaller is better) 116.8

BIC (smaller is better) 118.9

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 15.49 <.0001

Type 3 Tests of Fixed E�ects

E�ect Num DF Den DF F Value Pr > F

trt 5 22 19.42 <.0001

Using the BIC statistic to directly compare the models, we can see quite clearly that

the model with 2 residual variances (for treatments 1-3, and 4-6) is the best. Not only is

it the lowest, but it is also 130.8 - 118.9 = 11.9 units di�erent; as we noted before, this
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lends strong evidence that there is in fact heterogeneity of the residual variances between

the two de�ned groupings. If we were to use the AIC statistics we would arrive at the

same conclusion. If we wish to be 'classical' and use the χ2 approach we cannot look

at the -2LnL values and immediately conclude which model is best, we have to test the

di�erence(s) against the tabulated χ2. How?

Consider going from 1 residual variance to 2 residual variances; this is a di�erence

of (127.7 - 112.2 = 15.5). This is a di�erence of (2 - 1 = 1) parameters, and hence 1

d.f.; therefore we look up our tabulated χ2 for 1 d.f. and 5 % probability, the critical,

tabulated value is 3.84. Our calculated χ2 exceeds this, thus we can conclude that there

is a statistically signi�cant improvement in the �t of the model by going from 1 residual

variance to 2 residual variances. Likewise, if we examine the change in �t by going from

2 residual variances to 6 residual variances we obtain a calculated χ2 of (112.2 - 111.4 =

0.8), for (6-2=4) degrees of freedom. The tabulated χ2 for 5 % and 4 d.f. is 9.49. Thus,

our χ2
calc < χ2

tab, therefore we conclude that there is no more signi�cant improvement in

goodness of �t from going from 2 residual variances to 6 residual variances. Conclusion:

2 residual variances provide the best-�tting model. Now we can look at the F-test of the

�xed e�ects, lsmeans, estimates of di�erences, etc, etc.

Note how, to use the classicial χ2 we had to keep track of the changes of degrees of

freedom associated with the number of random e�ect parameters. It seems much easier

to simply use the BIC statistic, SAS has already combined the Log Likelihood and the

number of parameters. We can simply �t our various models, and the model with the

smallest BIC is the one with the best �tting random e�ect variance-covariance structure.

Using the log likelihoods and Chi-squares is the standard maximum likelihood approach;

however, it requires us to keep track of the number of random e�ects parameters (to deter-

mine degrees of freedom). In addition, it is ONLY applicable for comparing models where

1 model is a sub-set of the other; the case in this example. An easier approach is to let

SAS/PROC MIXED to the work! PROC MIXED computes the log likelihood and then im-

poses a penalty (as a function of the number of parameters required for the model). There

are various penalty methods: Akaike's Information Criterion [AIC], Schwartz's Bayesian

Criterion [BIC/SBC], and others; my preference is to use the BIC value, it is parsemonious

in ascribing additional random e�ects parameters. Thus we can directly compare the BIC

values from di�erent models, and choose the model with the lowest BIC value. Note, in

examining di�erent variance structures one should always apply a large measure of com-
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mon sense, and only consider as possible models those for which you are able to give an

explanation!
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19 Homogeneity of Variance - STD Ch 19.3

Bartlett's Test (STD Ch. 19.3, P480)

19.1 Basic Formulae

χ2 = 2.3026 ∗
([

i=a∑
i=1

(ni − 1)

]
log10 σ̄

2 −
i=a∑
i=1

[
(ni − 1) log10 σ

2
i

])

If we use natural logarithms (ln), we do not need to multiple by 2.3026

where σ̄2 equals the pooled variance, from our ANOVA since this accounts for the

estimation of any other factors in our model and hence the degrees of freedom. In practice,

it would be more desirable to use SAS PROC MIXED and directly test the homogeneity

of variance (see the Stats II Web site about Homogeneity of Variance and the SAS code).

Using PROC MIXED and �tted an e�ect to account for homogeneity of variances means

that if there is signi�cant heterogeneity (lack of homogeneity) then the tests of statistical

signi�cance etc will all be 'correct' and we can largely avoid all the need to �nd a 'suitable'

transformation to stabilise the variance!

Correction factor

1 +
1

3(a− 1)

[
i=a∑
i=1

1

ni − 1
− 1∑i=a

i=1(ni − 1)

]

a = No groups. => d.f. = a-1 for χ2 test

Then corrected χ2 =
χ2

correction factor

N.b. the correction factor is always greater than 1
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19.2 What to use for Homogeneity test

Recall that one of our requirements for the Analysis of Variance to be valid is that the

variances be homogeneous. We can use Bartlett's test to verify this. Basically we need to

divide the observations into appropriate groups and then test for homogeneity.

For a One-Way, Completely Randomized Design a reasonable, appropriate grouping

would therefore be by the groups, or treatments. Most textbooks use this to illustrate

Bartlett's test, and STD is no exception. Steel, Torrie and Dickey say to compute the

variances in each group, the logarithm of each variance, etc. This is all-well-and-good

in such a simple CRD situation, but becomes impossible to apply in any other more

complicated model/design; for example in a Randomized Complete Block design. For a

RCB should we group the observations by Block or by Treatment?

Why?

Recall that our linear model, for a CRD was

Yij = µ+ trti + eij

It is the homogeneity of the variances (of the eij's) that is important, not the homo-

geneity of the variances of the Yij's; even though Yij = µ+ trti + eij.

For a Completely Randomized Design if we compute the variance in each group using

the observed data, i.e. the Yij's, we compute the variance in the ith group as:

σ̂2
e =

j=ni∑
j=1

Y 2
ij − niȲ

2
ij

 /(ni − 1)

But, note that Yij = µ+ trti + eij

So

j=ni∑
j=1

Y 2
ij =

j=ni∑
j=1

(µ+ trti + eij)
2
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=
j=ni∑
j=1

(µ+ trti + eij)(µ+ trti + eij)

=
j=ni∑
j=1

(µ2 + µtrti + µeij + µtrti + trt2i + trtieij + µeij + trtieij + e2ij)

=
j=ni∑
j=1

(µ2 + 2µtrti + trt2i + 2trtieij + 2µeij + e2ij)

= niµ
2 + 2µ

j=ni∑
j=1

trti +
j=ni∑
j=1

trt2i + 2
j=ni∑
j=1

trtieij + 2
j=ni∑
j=1

µeij +
j=ni∑
j=1

e2ij

Note that
∑j=ni

j=1 eij = 0

Thus the above expression simpli�es to

niµ
2 + 2µ

j=ni∑
j=1

trti +
j=ni∑
j=1

trt2i +
j=ni∑
j=1

e2ij

= niµ
2 + 2niµtrti + nitrt

2
i +

j=ni∑
j=1

e2ij

If we turn to the Correction Factor for the mean of the group, niȲ
2
ij , we can re-write

this as:

niȲ
2
ij = ni

∑j=ni
j=1 (µ+ trti + eij)

ni

2
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=

j=ni∑
j=1

(µ+ trti + eij)

2 /ni

=

niµ+
j=ni∑
j=1

trti +
j=ni∑
j=1

eij

2

/ni

=

niµ+
j=ni∑
j=1

trti +
j=ni∑
j=1

eij

niµ+
j=ni∑
j=1

trti +
j=ni∑
j=1

eij

 /ni

= (n2
iµ

2 + niµ
j=ni∑
j=1

trti + niµ
j=ni∑
j=1

eij + niµ
j=ni∑
j=1

trti +
j=ni∑
j=1

trti

j=ni∑
j=1

trti +
j=ni∑
j=1

trti

j=ni∑
j=1

eij+

niµ
j=ni∑
j=1

eij +
j=ni∑
j=1

trti

j=ni∑
j=1

eij +
j=ni∑
j=1

eij

j=ni∑
j=1

eij)/ni

= niµ
2 + 2µ

j=ni∑
j=1

trti + nitrt
2
i + 2

j=ni∑
j=1

trtieij + 2µ
j=ni∑
j=1

eij +
j=ni∑
j=1

eij

j=ni∑
j=1

eij

Note that
∑j=ni

j=1 eij = 0

Therefore the above expression simpli�es to

niµ
2 + 2nitrti + nitrt

2
i

therefore σ̂2
i =

j=ni∑
j=1

Y 2
ij − niȲ

2
ij

 /(ni − 1)
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=

(niµ
2 + 2niµtrti + nitrt

2
i +

∑
j=1

j = nie
2
ij)− (niµ

2 + 2niµtrti + nitrt
2
i )

 /(ni − 1)

=
j=ni∑
j=1

e2ij/(ni − 1)

Thus what we are doing in computing the variance in each group in a Completely

Randomized Design is calculating the deviation from the group mean ( Yij − Ŷij ), which

is:

[µ+ trti + eij]− [µ+ trti]

i.e. eij. Thus in this simple case of a CRD using Yij is equivalent to using the residuals,

eij.

However, in most other designs/models this will not be the case. For example, if we

look at a Randomized Complete Block Design and ask whether the variances in each block

are homogeneous we can see immediately that the observations (experimental units) in

each block each received di�erent treatment e�ects.

If we look the the linear model for a RCB we have:

Yij = µ+ trti + blockj + eij

If we look the the observations in each block, then if we subtract out the jth block

e�ect ( µ + blockj ), we can see that the deviation from the jth block mean represents

( trti + eij ). Therefore, if we use these deviations to compute a variance we will be

computing a variance based on treatments and residual variation; not at all what we want,

AND completely wrong!
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19.3 Rationale for the use of residuals

HOWEVER, what if we compute, and use, the estimated residuals? Recall that in our

derivation of Least Squares we set out to estimate the various parameters that would

provide the 'best' �t; i.e. minimize the Sums of Squares of Errors, or in other words the

sum of the squared deviations of the actual observations from the �tted values,
∑
(Y − Ŷ )2.

What were the assumptions for our Least Squares method? They were that the errors

be uncorrelated; that the errors have an expectation of Zero (i.e. E(e) = 0 ) and a �nite

variance. Note, that for the method of Least Squares we are not requiring homogeneity

of variance, nor normality; these are only required subsequently for statistical tests of

signi�cance. So we can use Least Squares to compute the �tted values ( Ŷ ), which

represent (Ŷij = µ+ trti+ blockk). Thus (Y − Ŷ ) provides us with an estimate of the eij's,

Y − Ŷ = (µ+ trt+ i+ blockj + eij)− (µ+ trti + blockk)

= êij

Then we can use these estimated residuals, grouped appropriately, to test for homo-

geneity of variance.

19.4 Exercises

1. Using the data from the 1-Way, CRD (Section 11.5, page 83) test for homogeneity of

variance in each group (treatments). Do this twice, once using the Y's and once using ê.

Note that you get exactly the same answers, for the reasons outlined above. N.B. Make

use of SAS and the OUTPUT option of PROC GLM.

2. Using the data from the 2-Way, RCB (Section 20.4, page 166) test for homogeneity

of variance in each block. Do this twice, once using the Y's and once using the ê's. Note

the substantial di�erence. Again, make use of SAS.
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20 Multiway Classi�cation - STD Ch. 9

More than 1 source of variation, or classi�cation, a cross-classi�ed model.

Suppose that we are interested in looking at the weight gain of sows after they have

had their piglets weaned o� them. We want to see how quickly the sows regain weight; we

want to compare 6 diets, to see whether there are di�erences amongst the diets. We have

24 sows, so we can have 4 on each diet. We could randomly assign sows to the 6 diets, that

would give us a One-Way ANOVA. However, we note that the sows are not all of the same

parity, there are 6 1st parity sows, 6 2nd, 6 3rd and 6 4th. This is an identi�able, systematic

factor, hence we should [MUST] account for it in our design and model. We therefore

decide to take the 6 �rst parity sows and randomly allocate one sow to each of the 6 diets

(treatments). We then take the 6 second parity sows and randomly assign them to the 6

diets, and likewise for the third parity sows and the fourth parity sows. The 24 sows are

then randomly assigned to individual cages, so that they cannot interfer with one another;

so that our assumption of independence of the errors (and observations) will therefore be

reasonable.

The layout is shown below.

D
3
P
1

D
6
P
2

D
2
P
2

D
4
P
1

D
6
P
1

D
2
P
1

D
5
P
3

D
3
P
2

D
4
P
3

D
4
P
2

D
2
P
3

D
5
P
2

D
1
P
3

D
3
P
3

D
1
P
1

D
5
P
4

D
4
P
4

D
6
P
3

D
6
P
4

D
1
P
2

D
2
P
4

D
1
P
4

D
3
P
4

D
5
P
1

Let us call diet (with its 6 levels) Factor A, and Parity (with its 4 levels) Factor B.
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20.1 Linear model

Yij = µ+ Factor Ai + Factor Bj + ABij + sowij + ϵij

NOTE: we have only 1 experimental unit (sow) per AB (Diet*Parity) combination;

therefore, the A*B interaction and the sow e�ects are confounded with one another. We can

consider the AB interaction to be of a 'higher order' than the sow within AB e�ect. When

we have a higher order e�ect confounded with an e�ect of a lower order, then we should

go with the simpler e�ect, i.e. sow. If you think that there is, or might be, an interaction

between these two factors then this design is COMPLETELY AND ABSOLUTELY

WRONG and you should not even start your experiment with this design; you NEED a

factorial design, see section 28. Thus our statistical model must be simpli�ed to:

Yij = µ+ Factor Ai + Factor Bj + sowij + ϵij

NOTE: we have only 1 measurement per experimental unit, they are confounded and

thus we cannot separate sowij from ϵij. We shall have to consider only an 'error' term

for the measurement made on the sowij; the sow 'nested' within the ith Factor A and also

'nested' within the jth Factor B (note how this dovetails with what we saw in the One-way

ANOVA model). Thus our statistical model becomes

Yij = µ+ Factor Ai + Factor Bj + eij

The trial is carried out starting in October; however, during the middle of December

the students taking one of the production agriculture courses decide to have a barbeque

and the sta� decide to "appropriate" two pigs to serve as the input to human nutrition!

We loose the second parity sow from Diet 1 and the fourth parity sow from Diet 2. These

were the two pens most convenient for the students to take the animals from; a chance

random event unrelated to the Diets or Parity per se.

A suitable statistical model would therefore be:

Yij = µ+Dieti + Parityj + eij
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20.2 Parameters of the Model

µ, D1, D2, D3, D4, D5, D6, P1, P2, P3, P4, σ2
e

Alternatively, consider an example relating to crops. Suppose that we have 6 varieties

of maize that we want to compare and that we are going to have 4 plots for each variety,

so that we will have 24 plots, each one 2 metres wide by 5 metres long. Our �eld where

we are going to carry out this experiment is beside the autoroute and we mark out the 24

plots, seperated one from another so that there is no interference between plots. So far this

description is as per a Completely Randomised Design (One-way ANOVA). However, we

decide that we also want to examine the e�ect of row width (the width between adjacent

rows of maize in each plot). We have 4 row widths that we want to test, so we arrange that

for the 4 plots of each variety, 1 plot will be planted at each of the row spacings (widths).

The layout in the �eld is shown below.
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Unfortunately, part way through our experiment a large truck decides to leave the

autoroute and become part of the "decor", ploughing through two of the plots; Variety 1

Row Width 2, and Variety 2 Row Width 4. We therefore loose these two observations!

A suitable statistical model would therefore be:

165



Table 19: Two-Way ANOVA, Data

Diet Parity Row Width

(Variety) 1 2 3 4

Diet 1 Variety 1 3.4 . 4.1 7.0

Diet 2 Variety 2 2.3 1.9 7.1 .

Diet 3 Variety 3 3.4 4.0 3.1 5.5

Diet 4 Variety 4 5.8 6.6 6.4 8.0

Diet 5 Variety 5 5.3 4.9 7.1 6.9

Diet 6 Variety 6 5.4 7.3 6.7 8.7

Yij = µ+ V arietyi +Widthj + eij

20.3 Parameters

µ, V1, V2, V3, V4, V5, V6, W1, W2, W3, W4, σ2
e

20.4 Observations

This is a 2-way classi�cation; the 2 factors being Diet, or Variety, (6 levels) and Parity, or

Row Width, (4 levels).
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20.5 Matrix Equations



Y11

Y21

.

.

Y22

.

.

Y64



=



µ D1 D2 D3 D4 D5 D6 P1 P2 P3 P4

1 1 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 1 0 0 0

. . . . . . . . . . .

. . . . . . . . . . .

1 0 1 0 0 0 0 0 1 0 0

. . . . . . . . . . .

. . . . . . . . . . .

1 0 0 0 0 0 1 0 0 0 1





µ

D1

D2

D3

D4

D5

D6

P1

P2

P3

P4



+



e11

e21

.

.

e22

.

.

e64



Note that the ordering of the equations is immaterial, that is to say we could have Parity

(Row Width) �rst and Diet (Variety) second, as:

Yij = µ+ Parityj +Dieti + eij

Try it and see!

Y = X b + e

Normal equations are:

X ′Xb̃ = X ′Y
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20.6 Normal Equations



22 3 3 4 4 4 4 6 5 6 5

3 3 0 0 0 0 0 1 0 1 1

3 0 3 0 0 0 0 1 1 1 0

4 0 0 4 0 0 0 1 1 1 1

4 0 0 0 4 0 0 1 1 1 1

4 0 0 0 0 4 0 1 1 1 1

4 0 0 0 0 0 4 1 1 1 1

6 1 1 1 1 1 1 6 0 0 0

5 0 1 1 1 1 1 0 5 0 0

6 1 1 1 1 1 1 0 0 6 0

5 1 0 1 1 1 1 0 0 0 5





µ̃

D̃1

D̃2

D̃3

D̃4

D̃5

D̃6

P̃1

P̃2

P̃3

P̃4



=



120.9

14.5

11.3

16

26.8

24.2

28.1

25.6

24.7

34.5

36.1


20.7 A solution vector (GLM)

b̃ =



8.56808

−2.41540

−2.74397

−3.025

−0.325

−0.975

0.0

−2.72068

−2.21429

−1.23735

0.0



TSS = 739.41

SSR = 722.114

SSE = 17.295

CF = 664.400

SSRm = 57.714
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20.8 Analysis using SAS/IML

USING SAS/PROC IML

/* Two-Way Analysis of Variance */

proc iml;

reset print;

/* Diets Parities

mu 1 2 3 4 5 6 1 2 3 4

*/

x ={1 1 0 0 0 0 0 1 0 0 0,

1 1 0 0 0 0 0 0 0 0 1,

1 1 0 0 0 0 0 0 0 1 0,

1 0 1 0 0 0 0 1 0 0 0,

1 0 1 0 0 0 0 0 1 0 0,

1 0 1 0 0 0 0 0 0 1 0,

1 0 0 1 0 0 0 1 0 0 0,

1 0 0 1 0 0 0 0 1 0 0,

1 0 0 1 0 0 0 0 0 0 1,

1 0 0 1 0 0 0 0 0 1 0,

1 0 0 0 1 0 0 1 0 0 0,

1 0 0 0 1 0 0 0 1 0 0,

1 0 0 0 1 0 0 0 0 0 1,

1 0 0 0 1 0 0 0 0 1 0,

1 0 0 0 0 1 0 1 0 0 0,

1 0 0 0 0 1 0 0 1 0 0,

1 0 0 0 0 1 0 0 0 0 1,

1 0 0 0 0 1 0 0 0 1 0,

1 0 0 0 0 0 1 1 0 0 0,

1 0 0 0 0 0 1 0 1 0 0,

1 0 0 0 0 0 1 0 0 0 1,

1 0 0 0 0 0 1 0 0 1 0};

y={3.4,

7,

4.1,

2.3,

1.9,

7.1,

3.4,

4,
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5.5,

3.1,

5.8,

6.6,

8,

6.4,

5.3,

4.9,

6.9,

7.1,

5.4,

7.3,

8.7,

6.7};

xtx = x` * x;

xty = x` * y;

invxtx = ginv(xtx);

b = invxtx * xty;

tss = y` * y;

sumy = sum(y);

ssr = b` * xty;

ybar = sumy/nobs;

cf = nobs * ybar * ybar;

ssrm = ssr - cf;

dfd = 5;

dfp = 3;

rx = 1 + dfd + dfp;

dfe = nobs - rx;

sse = tss - ssr;

mse = sse/dfe;

/* Type III, Marginal Sums of Squares for Diets */

print /;

print " Type III Sums of Squares, Marginal, for Diets ";

kp= {0 1 -1 0 0 0 0 0 0 0 0,

0 1 0 -1 0 0 0 0 0 0 0,

0 1 0 0 -1 0 0 0 0 0 0,

0 1 0 0 0 -1 0 0 0 0 0,

0 1 0 0 0 0 -1 0 0 0 0};

k = kp`;

df = nrow(kp);
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kb = k` * b;

kxxk = k` * invxtx * k;

invkk = ginv(kxxk);

ssd = kb` * invkk * kb;

msd = ssd/df;

fd = msd/mse;

pr = 1 - probf(fd,df,dfe);

/* Type III, Marginal Sums of Squares for Parity */

print /;

print " Type III Sums of Squares, Marginal, for Parity ";

kp= {0 0 0 0 0 0 0 1 -1 0 0,

0 0 0 0 0 0 0 1 0 -1 0,

0 0 0 0 0 0 0 1 0 0 -1};

k = kp`;

df = nrow(kp);

kb = k` * b;

kxxk = k` * invxtx * k;

invkk = ginv(kxxk);

ssp = kb` * invkk * kb;

msp = ssp/df;

fp = msp/mse;

pr = 1 - probf(fp,df,dfe);

/* Another Type III, Marginal Sums of Squares k' matrix

for Parity */

print /;

print " Another Type III Sums of Squares, Marginal,

for Parity ";

kp= {0 0 0 0 0 0 0 -1 0 0 1,

0 0 0 0 0 0 0 0 -1 0 1,

0 0 0 0 0 0 0 0 0 -1 1};

k = kp`;

df = nrow(kp);

kb = k` * b;

kxxk = k` * invxtx * k;

invkk = ginv(kxxk);

ssp = kb` * invkk * kb;

msp = ssp/df;

fp = msp/mse;

pr = 1 - probf(fp,df,dfe);
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/* Type III, Marginal Sums of Squares for Parity

and Diet, i.e. SSRm */

print /;

print " Type III Sums of Squares, Marginal, for Parity and Diet ";

kp= {0 0 0 0 0 0 0 1 -1 0 0,

0 0 0 0 0 0 0 1 0 -1 0,

0 0 0 0 0 0 0 1 0 0 -1,

0 1 -1 0 0 0 0 0 0 0 0,

0 1 0 -1 0 0 0 0 0 0 0,

0 1 0 0 -1 0 0 0 0 0 0,

0 1 0 0 0 -1 0 0 0 0 0,

0 1 0 0 0 0 -1 0 0 0 0};

k = kp`;

df = nrow(kp);

kb = k` * b;

kxxk = k` * invxtx * k;

invkk = ginv(kxxk);

ssp = kb` * invkk * kb;

msp = ssp/df;

fp = msp/mse;

pr = 1 - probf(fp,df,dfe);

/* Estimates of fitted values, using the general k'b approach */

/* mu + d1 + p1 */

kp = {1 1 0 0 0 0 0 1 0 0 0};

k = kp`;

kb = k` * b;

sv = k` * invxtx * k * mse;

se = sqrt(sv);

/* mu + d1 + p2 */

kp = {1 1 0 0 0 0 0 0 1 0 0};

k = kp`;

kb = k` * b;

sv = k` * invxtx * k * mse;

se = sqrt(sv);

/* mu + d2 + p1 */

kp = {1 0 1 0 0 0 0 1 0 0 0};

k = kp`;

kb = k` * b;
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sv = k` * invxtx * k * mse;

se = sqrt(sv);

/* etc */

/* mu + d1 + average over parities */

kp = {4 4 0 0 0 0 0 1 1 1 1}/4;

k = kp`;

kb = k` * b;

sv = k` * invxtx * k * mse;

se = sqrt(sv);

quit;

20.9 Analysis using SAS/GLM

USING SAS/PROC GLM

data twoway1; /* Two-way ANOVA */

input d p y;

cards;

1 1 3.4

1 3 7.0

1 4 4.1

2 1 2.3

2 2 1.9

2 4 7.1

3 1 3.4

3 2 4.0

3 3 5.5

3 4 3.1

4 1 5.8

4 2 6.6

4 3 8.0

4 4 6.4

5 1 5.3

5 2 4.9

5 3 6.9

5 4 7.1

6 1 5.4

6 2 7.3

6 3 8.7
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6 4 6.7

;

proc glm data=twoway1;

classes d p;

model y = d p/xpx i solution;

/* Marginal, Type III, Sums of Squares for Diet */

contrast 'Diets, Type III' d 1 -1 0 0 0 0,

d 1 0 -1 0 0 0,

d 1 0 0 -1 0 0,

d 1 0 0 0 -1 0,

d 1 0 0 0 0 -1;

/* Marginal, Type III, Sums of Squares for Parities */

contrast 'Parities, Type III' p 1 -1 0 0,

p 1 0 -1 0,

p 1 0 0 -1;

/* Marginal, Type III, Sums of Squares for Diet and Parity */

contrast 'D and P, = SSRm' d 1 -1 0 0 0 0,

d 1 0 -1 0 0 0,

d 1 0 0 -1 0 0,

d 1 0 0 0 -1 0,

d 1 0 0 0 0 -1,

p 1 -1 0 0,

p 1 0 -1 0,

p 1 0 0 -1;

estimate 'Diet 1 - 2' d 1 -1 0 0 0 0;

estimate 'Diet 1 - 3' d 1 0 -1 0 0 0;

estimate 'Diet 1 - 4' d 1 0 0 -1 0 0;

estimate 'Diet 1 - 5' d 1 0 0 0 -1 0;

estimate 'Diet 1 - 6' d 1 0 0 0 0 -1;

estimate 'Diet 2 - 3' d 0 1 -1 0 0 0;

estimate 'Diet 2 - 4' d 0 1 0 -1 0 0;

estimate 'Diet 2 - 5' d 0 1 0 0 -1 0;

estimate 'Diet 2 - 6' d 0 1 0 0 0 -1;

estimate 'Diet 3 - 4' d 0 0 1 -1 0 0;

estimate 'Diet 3 - 5' d 0 0 1 0 -1 0;

estimate 'Diet 3 - 6' d 0 0 1 0 0 -1;

estimate 'Diet 4 - 5' d 0 0 0 1 -1 0;

estimate 'Diet 4 - 6' d 0 0 0 1 0 -1;

estimate 'Diet 5 - 6' d 0 0 0 0 1 -1;
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estimate 'Parity 1 - 2' p 1 -1 0 0;

estimate 'Parity 1 - 3' p 1 0 -1 0;

estimate 'Parity 1 - 4' p 1 0 0 -1;

/* Estimate each fitted value */

estimate 'D1 P1' intercept 1 d 1 0 0 0 0 0 p 1 0 0 0;

estimate 'D1 P2' intercept 1 d 1 0 0 0 0 0 p 0 1 0 0;

estimate 'D1 P3' intercept 1 d 1 0 0 0 0 0 p 0 0 1 0;

estimate 'D1 P4' intercept 1 d 1 0 0 0 0 0 p 0 0 0 1;

estimate 'D2 P1' intercept 1 d 0 1 0 0 0 0 p 1 0 0 0;

estimate 'D2 P2' intercept 1 d 0 1 0 0 0 0 p 0 1 0 0;

estimate 'D2 P3' intercept 1 d 0 1 0 0 0 0 p 0 0 1 0;

estimate 'D2 P4' intercept 1 d 0 1 0 0 0 0 p 0 0 0 1;

/* Estimate sum of Parities on Diet 1 */

estimate ' mu + D1 + sum p ' intercept 4 d 4 0 0 0 0 0

p 1 1 1 1;

/* Estimate average of parities for Diet 1,

note avoid fractions */

estimate ' mu + d1 + av p' intercept 4 d 4 0 0 0 0 0

p 1 1 1 1 /divisor=4;

lsmeans d/pdiff stderr;

lsmeans d/pdiff stderr adjust=scheffe;

run;

quit;

20.10 Analysis of Variance

Tabulated F-values

F9,13,5% = 2.71

F9,13,1% = 4.19

F8,13,5% = 2.77

F8,13,1% = 4.30
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Table 20: Two-Way ANOVA

ANOVA
Source df SS MS F − ratio E(MS)

Total, N = 22 Y ′Y
TSS 739.41

Model, r(X) b̃′X ′Y 80.235 60.327∗∗

SSR = 9 722.114

Mean, 1 Nȳ2 664.4 499.55∗∗

C.F. 664.4

Model, after r(X)− 1 b̃′X ′Y −Nȳ2

the mean, SSRm = 8 57.714 7.214 5.42∗∗ σ2
e +Q(D,P )

R(D,P | Mean)

Error, N − r(X) Y ′Y − b̃′X ′Y 1.330
Residual 22− 9 17.295 σ2

e

= 13
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The model accounts for a signi�cant amount of variation.

The model, corrected for the mean, accounts for a signi�cant amount of variation; i.e.

over and above the mean there is a signi�cant e�ect of Diet (Variety) and/or Parity (Row

Width).

21 Hypotheses to be tested

Much as for the 1-Way ANOVA, the initial hypothesis will be that the Model (µ and D

and P ) does not explain variation in the dependent variable, i.e. that the terms in the

Model (µ and D and P ) are all equal to Zero, and the Alternative Hypothesis is that these

terms (µ and D and P ) are not all equal to Zero. Although we (again) do not have a

full-rank model, we can write

Ho



µ

D1

D2

D3

D4

D5

D6

P1

P2

P3

P4



=



0

0

0

0

0

0

0

0

0

0

0



and obviously HA as ̸=.

The next hypothesis is about the Mean; as before it is: Ho: Ȳ = 0, and HA: Ȳ ̸= 0

Continuing our subdivision of the source of variation, we have the Model over and above

the Mean, which is the di�erences amongst Diets and the di�erence amongst Parities.

This we shall then subdivide into di�erences amongst Diets (over and above the Mean
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and Parities), and di�erences amongst Parities (over and above the Mean and Diets). We

can specify, therefore, our Null Hypotesis (Ho) as being that the e�ects of the Dies are all

equal, and that the e�ects of the Parities are all equal; our Alternative Hypothesis (HA)

will therefore be that the e�ects of the Diets are not all equal and/or that the e�ects of

the Parities are not all equal. Thus:

Ho : D1 = D2 = D3 = D4 = D5 = D6

HA : Diets are not all equal

The Null Hypothesis we can re-write as a series of comparisons:

6 Diets, 5 separate comparisons

i) D1 = D2

ii) D1 = D3

iii) D1 = D4

iv) D1 = D5

v) D1 = D6

which we can re-write as a series of comparisons with Null Hypotheses of Zero:

i) D1 - D2 = 0

ii) D1 - D3 = 0

iii) D1 - D4 = 0

iv) D1 - D5 = 0

v) D1 - D6 = 0

Ho



D1 −D2

D1 −D3

D1 −D4

D1 −D5

D1 −D6


=



0

0

0

0

0


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and

HA



D1 −D2

D1 −D3

D1 −D4

D1 −D5

D1 −D6


̸=



0

0

0

0

0



Similarly we can look at Parities.

Ho : P1 = P2 = P3 = P4

HA : Parities are not all equal

Ho


P1 − P2

P1 − P3

P1 − P4

 =


0

0

0



HA


P1 − P2

P1 − P3

P1 − P4

 ̸=


0

0

0



Thus, the Model over and above the Mean, R(Diet, Parity|µ) is:

Ho



D1 −D2

D1 −D3

D1 −D4

D1 −D5

D1 −D6

P1 − P2

P1 − P3

P1 − P4



=



0

0

0

0

0

0

0

0


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HA



D1 −D2

D1 −D3

D1 −D4

D1 −D5

D1 −D6

P1 − P2

P1 − P3

P1 − P4



̸=



0

0

0

0

0

0

0

0



22 Partitioning Sums of Squares for the Model

Partitioning SSRm into e�ects due to Diets and Parities. These are also called the 'CON-

TRAST' Sums of Squares, because they arise from contrasts, or comparisons, between

levels of e�ects.

22.1 Sums of Squares for Factor 1

6 Diets, 5 separate comparisons

i) D1 - D2

ii) D1 - D3

iii) D1 - D4

iv) D1 - D5

v) D1 - D6

Are these comparisons estimable? Well let us look at what we know! We know that

�tted values are estimable, hence Ŷ = Xb̃.

Thus the �tted value for the animal (experimental unit) receiving Diet 1, which was

Parity 1 will be:

Ŷ11 = (1 1 0 0 0 0 0 1 0 0 0)b̃

= Ŷ11 = µ̃+ D̃1 + P̃1
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And the �tted value for the animal (experimental unit) receiving Diet 2, which was

Parity 1 will be:

Ŷ21 = (1 0 1 0 0 0 0 1 0 0 0)b̃

= Ŷ21 = µ̃+ D̃2 + P̃1

These �tted values are both estimable, therefore a linear function of them (the di�er-

ence) will also be estimable.

k′
Ŷ11

=
(
1 1 0 0 0 0 0 1 0 0 0

)
−k′

Ŷ21
=
(
1 0 1 0 0 0 0 1 0 0 0

)
= k′

1−2 =
(
0 1 −1 0 0 0 0 0 0 0 0

)
Similarly, the �tted value for the animal (experimental unit) receiving Diet 3, which

was Parity 1 will be:

Ŷ31 = (1 0 0 1 0 0 0 1 0 0 0)b̃

= Ŷ31 = µ̃+ D̃3 + P̃1

Again, these �tted values are both estimable, therefore a linear function of them (the

di�erence) will also be estimable.

k′
Ŷ11

=
(
1 1 0 0 0 0 0 1 0 0 0

)
−k′

Ŷ31
=
(
1 0 0 1 0 0 0 1 0 0 0

)
= k′

1−3 =
(
0 1 0 −1 0 0 0 0 0 0 0

)
Etc, and putting these 5 comparisons together, we have

k′ =



0 1 −1 0 0 0 0 0 0 0 0

0 1 0 −1 0 0 0 0 0 0 0

0 1 0 0 −1 0 0 0 0 0 0

0 1 0 0 0 −1 0 0 0 0 0

0 1 0 0 0 0 −1 0 0 0 0



Marginal, Type III, Sums of Squares

Sums of Squares = (k′b̃)′[k′(X ′X)−k]−1(k′b̃)

Type III Sums of Squares Diets = 31.853
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22.2 SAS CONTRAST statement for Factor 1

Note these CONTRAST statements come after the MODEL statement in PROC GLM.

/* Marginal, Type III, Sums of Squares for Diet */

contrast 'Diets, Type III' d 1 -1 0 0 0 0,

d 1 0 -1 0 0 0,

d 1 0 0 -1 0 0,

d 1 0 0 0 -1 0,

d 1 0 0 0 0 -1;

contrast 'Parities, Type III' p 1 -1 0 0,

p 1 0 -1 0,

p 1 0 0 -1;

22.3 Sums of Squares for Factor 2

k′
Parities =


0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 1 0 −1 0

0 0 0 0 0 0 0 1 0 0 −1


Similarly the Type III Sums of Squares Parities = 22.096

22.4 SAS CONTRAST statement for Factor 2

/* Marginal, Type III, Sums of Squares for Parities */

contrast 'Parities, Type III' p 1 -1 0 0,

p 1 0 -1 0,

p 1 0 0 -1;

Thus we can construct a more detailed ANOVA
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Table 21: Two-Way ANOVA

Analysis of V ariance
Source df SS MS F − ratio

Total, N = 22 Y ′Y
TSS 739.41

Model, r(X) b̃′X ′Y 80.235 60.327∗∗

SSR = 9 722.114

Mean, 1 Nȳ2 664.4 499.55∗∗

C.F. 664.4

Model, after r(X)− 1 b̃′X ′Y −Nȳ2

the mean, SSRm = 8 57.714 7.214 5.42∗∗ σ2
e +Q(D,P )

R(D,P | Mean)

D 5 31.853 6.371 4.79∗ σ2
e +Q(D)

R(D | µ, P )

P 3 22.096 7.365 5.54∗ σ2
e +Q(P )

R(P | µ,D)

Error, N − r(X) Y ′Y − b̃′X ′Y 1.330
Residual 22− 9 17.295

183



Table 22: E(MS)

Source d.f. E(MS)

Model, after r(X)− 1 σ2
e +Q(D,P )

the mean, SSRm = 8

D 5 σ2
e +

1
6

∑i=6
i=1 ni(di − d̄)2 = σ2

e +Q(D)

R(D | µ, P )

P 3 σ2
e +

1
4

∑j=4
j=1 nj(pj − p̄)2 = σ2

e +Q(P )

R(P | µ,D)

Error, N − r(X) σ2
e

Compute the di�erences between Diets and their standard errors, using our general

approach of a k′ matrix to generate contrasts and hence di�erences.

22.5 Expectations of Mean Squares
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23 Gains in E�ciency STD 9.7

A randomised complete block design (RCB), as above, may be compared with that

expected from a completely random design (CR).

Estimate MSE (CR) =
fb ∗MSB + (ft + fe) ∗MSE

fb + ft + fe

MSB = block Mean Square

MSE = error Mean Square

fb, ft. & fe are block, treatment and error d.f.

Where do these degrees of freedom come from and why do we use them? We are

attempting to compute what the MSE would have been if we had had a CR design. If

we had not included Block in our model then all the Sums of Squares for Block would

be included in the Residual; fb MSB. The Residual Mean Square that we have presently

estimates σ2
e . The Residual has fe degrees of freedom. The Mean Square for Treatments

has Expectation of σ2
e +Q(trt), and has ft degrees of freedom. Thus we add (fe+ ft) MSE

to the Sums of Squares of Block! This, divided by the total of these degrees of freedom,

gives us an estimate of the MSE that we might have expected to get if we had carried out

a CR design.

Note the importance of this concept, since we shall return to it when looking at the

Relative E�ciency of other designs. This same general principle will allow us to examine

the Relative E�ciency of other designs, even ones that we shall not explicitly cover in this

course.

Thus MSE(CR) =
3(7.365) + (5 + 13)1.33

3 + 5 + 13
= 2.192

Then Relative E�ciency, RE (RCB to CRD)

=
(f1 + 1)(f2 + 3)MSE(CR)

(f2 + 1)(f1 + 3)MSE(RCB)
∗ 100

Where f1 = the residual degrees of freedom for a RCB (model with the factor include)

and f2 = the residual degrees of freedom for a CRD (the model without the factor).
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(13 + 1)(16 + 3)2.192

(16 + 1)(13 + 3)1.33
∗ 100 = 161 percent

in this example the RE was 161 %, consistent with di�erences between blocks

24 Expectation of Mean Squares

See Steel, Torrie and Dickey Ch. 9.9, Page 225

If the e�ects we consider are �xed e�ects then we will be interested in the di�erences

between the various treatments or factors. However, if the e�ects that we are considering

are classed as random e�ects then it is the variability in the population that we should be

interested in.

The two-way model that we have been considering, the RCB design, would usually

have treatment as a �xed e�ect; that being the purpose of the experiment in all likelihood.

In the design as proposed, with the e�ects of block, we might well not be interested in

the speci�c di�erences between blocks; particularly if they are �elds or some other such

e�ect. Why? Because other producers using the treatment(s) will not have the same �elds.

Thus our �elds are a random sample of �elds, and we should probably consider �elds as

a random e�ect. However, if the "block" e�ect was a speci�c e�ect, such as sex (male

vs female!), then we should probably consider block to be a �xed e�ect. These cases are

shown in Table 9.8 of STD (P226) for the cases of Mixed model no interaction no sampling,

and Fixed model no interaction no sampling respectively.

Consider that we have r blocks and t treatments, and that their e�ects are βj and αi,

respectively, expressed as deviations from their means.

The above models are probably the most common situations, but they are by no means

the only possibilities. Another possibility is that both factors be random. We might have

a random sample of �elds (blocks) and we might have a random sample of treatments (see

STD).
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Table 23: Expectations of Mean Squares

Block E�ect

Source of Variation df Random Fixed

Block r-1 σ2
e + tσ2

β σ2
e + Q(β2

j )

Treatments t-1 σ2
e + Q(α2

i ) σ2
e + Q(α2

i )

Residual (t-1)(r-1) σ2
e σ2

e

Using the same data, for the balanced case, work out what the expectations of the

various Mean Squares are for the situation of both factors being random e�ects and hence

the various variance components.

187



25 Least Squares Means

In the scienti�c literature it is very common to see the term "Least Squares Means" or "LS

Means". What are LS Means? How do we compute them? What are their advantages and

disadvantages? Upon what assumptions are they dependent? As mentioned previously,

the term least squares means is somewhat of a shorthand for a more correct statement -

estimates of means calculated using the method of least squaes.

Least Squares Means are based on "�tted values", so they are statistically estimable.

Remember that �tted values represent our (unbiased) estimates of the corresponding linear

function of the same real parameters. They are meant to estimate the means, using our

method of least squares, and not to be a�ected by having unequal numbers of observations

in each group; they should be better estimators than the simple averages. To illustrate

this let us use the Two-Way ANOVA and the One-Way, Completely Randomized Design.

We need to look initially at the CRD example (Section 11.5). Suppose we ask "What

is the clover production from each of the 6 treatments?" The answer to this is the �tted

value estimates for:

(µ̃+ ˜trt1) = 28.82± 1.60

(µ̃+ ˜trt2) = 23.90± 1.79

(µ̃+ ˜trt3) = 14.35± 1.79

(µ̃+ ˜trt4) = 19.92± 1.60

(µ̃+ ˜trt5) = 13.26± 1.60

(µ̃+ ˜trt6) = 18.70± 1.60

These are the "Least Squares Means" for Treatment. (µ̃+ ˜trt6) is our unbiased estimate

of (µ+ trt6).

Suppose that we ask a similar question about Diets from our Two-Way model. We

do not have (µ̃ + ˜diet1); our �tted values are (µ̃ + ˜diet1 + ˜parity1), (µ̃ + ˜diet1 + ˜parity2),
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(µ̃ + ˜diet1 + ˜parity3) and (µ̃ + ˜diet1 + ˜parity4). Is this insurmountable? Suppose that

we decide to de�ne our various e�ects of Diet and Parity as being expressed as deviations

about the mean, so that
∑

Dieti = 0 and
∑

Parityj = 0. Then if we take the 4 �tted

values for Diet 1 and average them we have:

(µ̃+ ˜diet1 + ˜parity1)

+(µ̃+ ˜diet1 + ˜parity2)

+(µ̃+ ˜diet1 + ˜parity3)

+(µ̃+ ˜diet1 + ˜parity4)

= 4µ̃+ 4 ˜Diet1 +
j=4∑
j=1

˜Parityj

However, note that we have de�ned that the Parity e�ects will be expressed as devia-

tions about the mean (µ), i.e.
∑

Parityj = 0. Thus, dividing by 4 to bring it back to a

"per-unit" basis we have

µ̃+ ˜Diet1 +
1

4

j=4∑
j=1

˜Parityj

which we can consider to estimate

µ+Diet1 +
1

4

j=4∑
j=1

Parityj Note this is the ACTUAL, REAL model

and since
∑

Parityj = 0 this therefore can be considered to estimate

µ+Diet1 +
1

4
0

which equals µ+Diet1

It is important to note that we are NOT saying that the Parity e�ects are Zero, only

that the sum of their e�ects is zero, and we are talking about the REAL parameters

summing to Zero, by de�nition. Our solution vector has NOT changed, and we should

note that the sum of the solutions for Parity does NOT equal Zero! (i.e.
∑

P̃j ̸= 0 ).

189



25.1 LSMEANS using SAS/GLM

USING SAS/PROC GLM

proc glm data=twoway1;

classes d p;

model y = d p;

/* lsmeans computed explicitly */

estimate 'lsmean Diet 1' intercept 1 d 1 0 0 0 0 0 p .25 .25 .25 .25;

estimate 'lsmean Diet 2' intercept 1 d 0 1 0 0 0 0 p .25 .25 .25 .25;

estimate 'lsmean Diet 3' intercept 1 d 0 0 1 0 0 0 p .25 .25 .25 .25;

estimate 'lsmean Diet 4' intercept 1 d 0 0 0 1 0 0 p .25 .25 .25 .25;

estimate 'lsmean Diet 5' intercept 1 d 0 0 0 0 1 0 p .25 .25 .25 .25;

estimate 'lsmean Diet 6' intercept 1 d 0 0 0 0 0 1 p .25 .25 .25 .25;

/* Note, use /divisor= option to avoid fractions in the estimate

statement */

estimate 'lsmean Parity 1' intercept 6 d 1 1 1 1 1 1 p 6 0 0 0/divisor=6;

estimate 'lsmean Parity 2' intercept 6 d 1 1 1 1 1 1 p 0 6 0 0/divisor=6;

estimate 'lsmean Parity 3' intercept 6 d 1 1 1 1 1 1 p 0 0 6 0/divisor=6;

estimate 'lsmean Parity 4' intercept 6 d 1 1 1 1 1 1 p 0 0 0 6/divisor=6;

lsmeans d/pdiff stderr;

lsmeans d/pdiff stderr adjust=scheffe;

run;

quit;

190



26 Multiway Classi�cation - Fixed e�ect and Random

E�ect, STD Ch. 9

We continue our multi-way model (two factors, but now we consider one of them to be a

random e�ect rather than a �xed e�ect.

Suppose that we are interested looking at 4 varieties of maize, in real, �eld conditions.

We recruit 12 farmers who agree to allow us to use 4 plots (�elds) on each of their farms.

On each farm we randomly allocate the 4 varieties of maize, one to each plot. At harvest we

record the maize yield from each plot (�eld). For our analysis we shall need to account for

the e�ects of variety AND farm. This two-factor model looks very similar to the preceeding

two-factor model (of diets and parities). HOWEVER, there is a di�erence; in this model

we are not interested in these 12 farms, we consider them to be a reasonably random

representative sample of Quebec farms, and we wish our results to be extrapolatable from

these 12 farms to all farms in general; therefore we shall consider farms to be a random

e�ect, rather than a �xed e�ect. IF we considered farm to be a �xed e�ect, then these

results would only be applicable to these exact 12 farms and could not be extrapolated

or considered applicable to yields from other farms. This, in all likelihood, goes exactly

against the reason for the trial, which is to be able to generalise from these 12 samples

farms to say that the results can be considered applicable to farms in general.

A suitable statistical model would therefore be:

Yij = µ+ V arietyi + farmj + eij

farmj ∼ N(0, σ2
f )

eij ∼ N(0, σ2
e)
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26.1 Parameters

µ, V1, V2, V3, V4, σ2
f , σ2

e

26.2 Observations

To analyse these data, where we have a �xed e�ect and a random e�ect, we should use a

mixed model procedure (eg SAS PROC MIXED, or R lmerTest). PROC MIXED will give

us an F-test of the �xed e�ect(s), and we can ask for lsmeans, and we can ESTIMATE

di�erences, etc.

IF we want to know what are the e�ects of the farms (i.e. not jsut the variance amongst

farms) then such a question is asking for the PREDICTION of a random e�ect. This is

called BLUP: Best Linear Unbiased Prediction; we can obtain such predictions by adding

the /SOLUTION option to the random statement (see SAS code below). In the below

SAS code the ODS OUTPUT statement means that we also capture these output BLUPs

to a new SAS dataset (solr1) for possible further manipulations etc.

26.3 Analysis using SAS/MIXED

USING SAS/PROC MIXED

data twoway2; /* Two-way RCBD */

input variety farm y;

cards;

1 1 51.9

2 1 53.7

3 1 54.9

4 1 55.6

1 2 51.6

2 2 50.9

3 2 52.2

4 2 53.8

1 3 44.0
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Table 24: Two-Way RCBD, Data

Variety Farm Yield Variety Farm Yield

1 1 51.9 1 7 52.1

2 1 53.7 2 7 53.4

3 1 54.9 3 7 55.5

4 1 55.6 4 7 56.1

1 2 51.6 1 8 52.6

2 2 50.9 2 8 52.4

3 2 52.2 3 8 53.6

4 2 53.8 4 8 55.8

1 3 44.0 1 9 49.3

2 3 46.0 2 9 49.4

3 3 47.3 3 9 52.1

4 3 48.4 4 9 51.6

1 4 52.6 1 10 51.1

2 4 52.8 2 10 52.5

3 4 54.0 3 10 52.9

4 4 56.3 4 10 57.1

1 5 56.5 1 11 58.6

2 5 57.5 2 11 57.6

3 5 58.2 3 11 58.9

4 5 61.7 4 11 61.0

1 6 48.5 1 12 45.1

2 6 50.8 2 12 46.7

3 6 51.6 3 12 47.9

4 6 52.0 4 12 48.0
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2 3 46.0

3 3 47.3

4 3 48.4

1 4 52.6

2 4 52.8

3 4 54.0

4 4 56.3

1 5 56.5

2 5 57.5

3 5 58.2

4 5 61.7

1 6 48.5

2 6 50.8

3 6 51.6

4 6 52.0

1 7 52.1

2 7 53.4

3 7 55.5

4 7 56.1

1 8 52.6

2 8 52.4

3 8 53.6

4 8 55.8

1 9 49.3

2 9 49.4

3 9 52.1

4 9 51.6

1 10 51.1

2 10 52.5

3 10 52.9

4 10 57.1

1 11 58.6

2 11 57.6

3 11 58.9

4 11 61.0

1 12 45.1

2 12 46.7

3 12 47.9

4 12 48.0

;

ods output SolutionR=solr1;

proc mixed data=twoway2;
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class variety farm;

model y = variety/ddfm=kr;

random farm/solution;

lsmeans variety;

estimate 'v1 - v2' variety 1 -1 0 0;

run;

quit;

26.4 Results

Model Information

Data Set WORK.TWOWAY2

Dependent Variable y

Covariance Structure Variance Components

Estimation Method REML

Residual Variance Method Pro�le

Fixed E�ects SE Method Kenward−Roger
Degrees of Freedom Method Kenward−Roger

Class Level Information

Class Level Information

Class Levels Values

variety 4 1 2 3 4

farm 12 1 2 3 4 5 6 7 8 9 10 11 12

Dimensions

Dimensions

Covariance Parameters 2

Columns in X 5

Columns in Z 12

Subjects 1

Max Obs Per Subject 48

[2]Number of Observations
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Number of Observations

Number of Observations Read 48

Number of Observations Used 48

Number of Observations Not Used 0

Iteration History

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 254.39543556

1 1 162.98882144 0.00000000

Convergence Status

Convergence criteria met.

Covariance Parameter Estimates

Covariance Parameter Estimates

Cov Parm Estimate

farm 14.5449

Residual 0.6041

Fit Statistics

Fit Statistics

-2 Res Log Likelihood 163.0

AIC (smaller is better) 167.0

AICC (smaller is better) 167.3

BIC (smaller is better) 168.0

Type 3 Tests of Fixed E�ects

Type 3 Tests of Fixed E�ects

E�ect Num DF Den DF F Value Pr > F

variety 3 33 49.78 <.0001

Estimates

Estimates

Label Estimate Standard Error DF t Value Pr > |t|

v1 - v2 −0.8167 0.3173 33 −2.57 0.0147
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Least Squares Means

Least Squares Means

E�ect variety Estimate Standard Error DF t Value Pr > |t|

variety 1 51.1583 1.1236 11.7 45.53 <.0001

variety 2 51.9750 1.1236 11.7 46.26 <.0001

variety 3 53.2583 1.1236 11.7 47.40 <.0001

variety 4 54.7833 1.1236 11.7 48.76 <.0001

IF we �t a model without the random e�ect of farm we �nd that the BIC value was

258.2 (as compared with the 168 when the random e�ect of farm was included). This

di�erence is substantial, more than 8, indicating that we can consider the e�ect of farm to

be signi�cant.
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27 Subsamples, or Nested Models

STD : Ch 7.6. P157

In many cases we have a model with subsamples. This arises when the experimental unit

and the sampling unit are not the same. For example, imagine that we have 3 treatments

that we wish to test on apple trees to see which treatment produces the heaviest apples.

We have 12 apple trees and we randomly assign 4 trees to each treatment. We spray each

tree with the appropriate treatment at the beginning of the growing season and then in

the fall we randomly pick 6 apples from each tree and weigh them. We have 72 apples and

hence 72 weights.

BUT, the experimental unit, to which the treatment was applied, was the tree and

NOT the apple; apples are the subsampling unit. If one ignored this elementary fact and

analysed the data one would in all likelihood come up with overly optimistic results; i.e.

rubbish.

27.1 Linear model

Yijk = µ+ trti + treeij + eijk

27.2 Parameters for a Nested Model

The parameters of this model are: µ, each of the treatments ( d1, d2 and d3), the variance

of the random e�ect of trees (nested within treatments) (σ2
tree/trt) and the variance of the

random e�ect of apples within trees (σ2
e)

27.3 Hypotheses

Let us start with considering treatments. Our hypothesis will be very similar to that of

previous �xed e�ects models; to test whether there are di�erences between the treatments

(over and above the Mean). This we can describe (in words) in the form of a 'Null
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Hypothesis' that the treatments are all equal, vs an 'Alternative Hypothesis' that the

treatments are not all equal; i.e.

Ho : trt1 = trt2 = trt3

HA : treatments are not all equal

The Null Hypothesis we can re-write as a series of comparisons:

2 Treatments, 2 separate comparisons

i) trt1 = trt2

ii) trt1 = trt3

which we can re-write as a series of comparisons with Null Hypotheses of Zero:

i) trt1 - trt2 = 0

ii) trt1 - trt3 = 0

Which we can express statistically (as one hypothesis) as:

Ho

 trt1 − trt2

trt1 − trt3

 =

 0

0



and

HA

 trt1 − trt2

trt1 − trt3

 ̸=

 0

0



If we turn now to the random e�ects of trees, we can consider that our Null Hypothesis

will be that the variance amongst trees equals Zero.
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Ho : σ2
tree/trt = 0

HA : σ2
tree/trt > 0

Then, combining these two, our Null Hypothesis, for the Model over and above the

Mean would be:

Ho


trt1 − trt2

trt1 − trt3

σ2
tree/trt

 =


0

0

0



HA


trt1 − trt2

trt1 − trt3

σ2
tree/trt

 ̸=


0

0

0



BUT, σ2
tree/trt = 0 means that there are no di�erences amongst trees, i.e. that they

are all equal.

Thus, we could, by analogy, say that σ2
tree/trt = 0 is equal to a Null Hypothesis of:

Ho: Within treatments, there are no di�erences amongst trees, i.e. that, within treat-

ments, trees are all equal.

i.e. tree11 = tree12 = tree13 = tree14

and tree21 = tree22 = tree23 = tree24

and tree31 = tree32 = tree33 = tree34
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which gives:

Ho



tree11 − tree12

tree11 − tree13

tree11 − tree14

tree21 − tree22

tree21 − tree23

tree21 − tree24

tree31 − tree32

tree31 − tree33

tree31 − tree34



=



0

0

0

0

0

0

0

0

0



vs. HA



tree11 − tree12

tree11 − tree13

tree11 − tree14

tree21 − tree22

tree21 − tree23

tree21 − tree24

tree31 − tree32

tree31 − tree33

tree31 − tree34



̸=



0

0

0

0

0

0

0

0

0



We can therefore combine these to give a series of comparisons for the treatments and

trees within treatments.

27.4 Matrix Equations

Y111
Y112

.

.
Y116
Y121

.

.

.
Y131

.

.
Y211

.

.
Y346


=



µ d1 d2 d3 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
µ d1 d2 d3 t11 t12 t13 t14 t21 t22 t23 t24 t31 t32 t33 t34
1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
.
.
1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
.
.
.
1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
.
.
1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
.
.
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1





µ
trt1
trt2
trt3

tree11
tree12
tree13
tree14
tree21
tree22
tree23
tree24
tree31
tree32
tree33
tree34


+



e111
e112
.
.

e116
e121
.
.
.

e131
.
.

e211
.
.

e346


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27.5 Normal Equations



72 24 24 24 6 6 6 6 6 6 6 6 6 6 6 6

24 24 0 0 6 6 6 6 0 0 0 0 0 0 0 0

24 0 24 0 0 0 0 0 6 6 6 6 0 0 0 0

24 0 0 24 0 0 0 0 0 0 0 0 6 6 6 6

6 6 0 0 6 0 0 0 0 0 0 0 0 0 0 0

6 6 0 0 0 6 0 0 0 0 0 0 0 0 0 0

6 6 0 0 0 0 6 0 0 0 0 0 0 0 0 0

6 6 0 0 0 0 0 6 0 0 0 0 0 0 0 0

6 0 6 0 0 0 0 0 6 0 0 0 0 0 0 0

6 0 6 0 0 0 0 0 0 6 0 0 0 0 0 0

6 0 6 0 0 0 0 0 0 0 6 0 0 0 0 0

6 0 6 0 0 0 0 0 0 0 0 6 0 0 0 0

6 0 0 6 0 0 0 0 0 0 0 0 6 0 0 0

6 0 0 6 0 0 0 0 0 0 0 0 0 6 0 0

6 0 0 6 0 0 0 0 0 0 0 0 0 0 6 0

6 0 0 6 0 0 0 0 0 0 0 0 0 0 0 6





µ̃

˜trt1
˜trt2
˜trt3
˜tree11
˜tree12
˜tree13
˜tree14
˜tree21
˜tree22
˜tree23
˜tree24
˜tree31
˜tree32
˜tree33
˜tree34



=



25295.961

8003.348

8312.891

8979.722

1966.623

2005.769

2043.389

1987.567

2080.749

2172.589

2002.67

2056.883

2283.779

2230.488

2230.632

2234.823


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27.6 Analysis of Variance

Analysis of V ariance

Source df SS MS F − ratio

Total, N = 72 Y ′Y

TSS 8916948.5047

Model, r(X) b̃′X ′Y 742618.98

SSR = 12 8911427.8

Mean, 1 Nȳ2 8887300.6

C.F. 8887300.6

Model, after r(X)− 1 b̃′X ′Y −Nȳ2

the mean, SSRm = 11 24127.213741 2193.38307 23.84∗∗

R(trt, tree | Mean)

trt (d− 1) 20747.0367 10373.518 10373.518
375.575

R(trt | Mean) = 2 = 27.62

tree within trt d(p− 1) 3380.1771 375.575 4.08∗

R(tree | µ, trt) = 9

Error, N − r(X) Y ′Y − b̃′X ′Y 92.01158

Residual 72− 12 5520.695
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27.7 Expectations of Mean Squares

trt (d− 1) σ2
e + k3σ

2
tree/trt +

1
d−1

∑
i ni.(trti − ¯trt)2

= σ2
e + k3σ

2
tree/trt +Q(trt)

tree within trt d(p− 1) σ2
e + k2σ

2
tree/trt

Error, N − r(X) σ2
e

Residual 72− 12 = 60

27.8 Computing Sums of Squares

After computing the Sums of Squares for the model corrected for the mean, R(trt, tree(trt) | µ),
we need to compute the Reduction Sums of Squares for treatment, over and above the

mean, or after the mean, R(trt | µ).

Let us return to our [favourite] �tted values:

Ŷ111 = µ̃+ ˜trt1 + ˜tree11 k′ = (1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0)

Ŷ121 = µ̃+ ˜trt1 + ˜tree12 k′ = (1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0)

Then the di�erence between these two �tted values is estimable:

Ŷ111 − Ŷ121 = (µ̃+ ˜trt1 + ˜tree11)− (µ̃+ ˜trt1 + ˜tree12) = ˜tree11 − ˜tree12

with k′ = (0 0 0 0 1 − 1 0 0 0 0 0 0 0 0 0 0)

Compare treatment 1, tree 1 vs treatment 1, tree 3:

Ŷ111 = µ̃+ ˜trt1 + ˜tree11 k′ = (1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0)

Ŷ131 = µ̃+ ˜trt1 + ˜tree13 k′ = (1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0)
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Then the di�erence between these two �tted values is estimable:

Ŷ111 − Ŷ131 = (µ̃+ ˜trt1 + ˜tree11)− (µ̃+ ˜trt1 + ˜tree13) = ˜tree11 − ˜tree13

with k′ = (0 0 0 0 1 0 − 1 0 0 0 0 0 0 0 0 0)

Compare treatment 1, tree 1 vs treatment 1, tree 4:

Ŷ111 = µ̃+ ˜trt1 + ˜tree11 k′ = (1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0)

Ŷ141 = µ̃+ ˜trt1 + ˜tree14 k′ = (1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0)

Then the di�erence between these two �tted values is estimable:

Ŷ111 − Ŷ141 = (µ̃+ ˜trt1 + ˜tree11)− (µ̃+ ˜trt1 + ˜tree14) = ˜tree11 − ˜tree14

with k′ = (0 0 0 0 1 0 0 − 1 0 0 0 0 0 0 0 0)

Putting these comparisons together:

k′
1−2 = (0 0 0 0 1 − 1 0 0 0 0 0 0 0 0 0 0)

k′
1−3 = (0 0 0 0 1 0 − 1 0 0 0 0 0 0 0 0 0)

k′
1−4 = (0 0 0 0 1 0 0 − 1 0 0 0 0 0 0 0 0)

k′ =


0 0 0 0 1 − 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 − 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 − 1 0 0 0 0 0 0 0 0


We can repeat the same exercise to make the comparisons amongst the trees on treat-

ment 2:

k′ =


0 0 0 0 0 0 0 0 1 − 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 − 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 − 1 0 0 0 0


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We can repeat the same exercise to make the comparisons amongst the trees on treat-

ment 3:

k′ =


0 0 0 0 0 0 0 0 0 0 0 0 1 − 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 − 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 − 1


Putting these 3 k' matrices together we obtain a k' for the e�ect of trees nested within

treatments, SStree(trt):

k′ =



0 0 0 0 1 − 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 − 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 − 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 − 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 − 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 − 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 − 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 − 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 − 1



NOTE: k' is a 9*16 matrix, which corresponds to our 9 degrees of freedom.

What about treatments? Consider our 4 �tted values for the 4 trees on treatment 1:

Ŷ111 = µ̃+ ˜trt1 + ˜tree11 k′ = (1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0)

Ŷ121 = µ̃+ ˜trt1 + ˜tree12 k′ = (1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0)

Ŷ131 = µ̃+ ˜trt1 + ˜tree13 k′ = (1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0)

Ŷ141 = µ̃+ ˜trt1 + ˜tree14 k′ = (1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0)

The sum of these is estimable, we know:

j=4∑
j=1

= 4µ̃+ 4 ˜trt1 + ˜tree11 + ˜tree12 + ˜tree13 + ˜tree14 = 4µ̃+ 4 ˜trt1 +
j=4∑
j=1

˜tree1j

k′ = (4 4 0 0 1 1 1 1 0 0 0 0 0 0 0 0)

206



and their average:

1

4

j=4∑
j=1

= µ̃+ ˜trt1 +
1

4
˜tree11 +

1

4
˜tree12 +

1

4
˜tree13 +

1

4
˜tree14 = µ̃+ ˜trt1 +

1

4

j=4∑
j=1

˜tree1j

k′ = (1 1 0 0
1

4

1

4

1

4

1

4
0 0 0 0 0 0 0 0)

Note: this k' corresponds to the LSmean for treatment 1, i.e. the average over the 4

�tted values for (treatment, tree).

What about treatments? Consider our 4 �tted values for the 4 trees on treatment 2:

Ŷ211 = µ̃+ ˜trt2 + ˜tree21 k′ = (1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0)

Ŷ221 = µ̃+ ˜trt2 + ˜tree22 k′ = (1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0)

Ŷ231 = µ̃+ ˜trt2 + ˜tree23 k′ = (1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0)

Ŷ241 = µ̃+ ˜trt2 + ˜tree24 k′ = (1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0)

The sum of these is estimable, we know:

j=4∑
j=1

= 4µ̃+ 4 ˜trt12 + ˜tree21 + ˜tree22 + ˜tree23 + ˜tree24 = 4µ̃+ 4 ˜trt2 +
j=4∑
j=1

˜tree2j

k′ = (4 0 4 0 0 0 0 0 1 1 1 1 0 0 0 0)

and their average:

1

4

j=4∑
j=1

= µ̃+ ˜trt2 +
1

4
˜tree21 +

1

4
˜tree22 +

1

4
˜tree23 +

1

4
˜tree24 = µ̃+ ˜trt2 +

1

4

j=4∑
j=1

˜tree2j

k′ = (1 0 1 0 0 0 0 0
1

4

1

4

1

4

1

4
0 0 0 0)

Note: this k' corresponds to the LSmean for treatment 2, i.e. the average over the 4

�tted values for (treatment, tree).

Thus the di�erence between treatment 1 (averaged over the trees on treatment 1) and

treatment 2 (averaged over the trees on treatment 2) is estimable:
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k′
trt 1 = (1 1 0 0

1

4

1

4

1

4

1

4
0 0 0 0 0 0 0 0)

−k′
trt 2 = (1 0 1 0 0 0 0 0

1

4

1

4

1

4

1

4
0 0 0 0)

= k′
1−2 = (0 1 − 1 0

1

4

1

4

1

4

1

4
− 1

4
− 1

4
− 1

4
− 1

4
0 0 0 0)

In an exactly analogous manner the di�erence between treatment 1 (averaged over the

trees on treatment 1) and treatment 3 (averaged over the trees on treatment 3) is estimable:

k′
trt 1 = (1 1 0 0

1

4

1

4

1

4

1

4
0 0 0 0 0 0 0 0)

−k′
trt 3 = (1 0 0 1 0 0 0 0 0 0 0 0

1

4

1

4

1

4

1

4
)

= k′
1−3 = (0 1 0 − 1

1

4

1

4

1

4

1

4
0 0 0 0 − 1

4
− 1

4
− 1

4
− 1

4
)

We can then combine these 2 contrasts (trt1-2 and trt1-3),

k′
trt =

 0 1 − 1 0 1
4

1
4

1
4

1
4

− 1
4

− 1
4

− 1
4

− 1
4

0 0 0 0

0 1 0 − 1 1
4

1
4

1
4

1
4

0 0 0 0 − 1
4

− 1
4

− 1
4

− 1
4



NOTE: this k' matrix is a 2*16 matrix, it has 2 rows, corresponding to the 2 degrees

of freedom amongst our 3 treatments.

Actually this is still a simpli�cation, we really have e�ects which are �xed (treatments)

and e�ects which are random (trees) and hence we have what is more correctly known as

a 'mixed model'. We should use the PROC MIXED procedure of SAS.
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27.9 Comparisons amongst treatment means

The appropriate Mean Square/Variance to use for the treatment contrasts is the Mean

Square between trees within treatments. This is the same Mean Square as used to test the

statistical signi�cance of treatments!

Similarly, for our lsmeans and estimates for treatment e�ects (e.g. di�erences amongst

treatments) the Mean Square (σ2) to use in our formula for the sampling variance is:

MStree/trt

However, in GLM the ESTIMATE statement DOES NOT ALLOW of an error other

than MSE, so you have to back-calculate yourself! PROC MIXED (being a proper mixed

model) gets it right AUTOMAGICALLY.

27.10 Analysis using SAS

USING SAS/PROC GLM

data subsamp1;

input trt tree apple wt;

cards;

1 1 1 313.063

1 1 2 329.132

1 1 3 334.278

1 1 4 330.088

1 1 5 334.987

1 1 6 325.075

1 2 1 333.936

1 2 2 326.155

1 2 3 352.854

1 2 4 350.791

1 2 5 318.560

1 2 6 323.473

1 3 1 345.494

1 3 2 349.296

1 3 3 339.190

1 3 4 338.942

1 3 5 331.370

1 3 6 339.097
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1 4 1 340.840

1 4 2 336.798

1 4 3 313.810

1 4 4 333.880

1 4 5 343.068

1 4 6 319.171

2 5 1 349.271

2 5 2 336.695

2 5 3 352.797

2 5 4 348.486

2 5 5 352.077

2 5 6 341.423

2 6 1 356.880

2 6 2 356.256

2 6 3 364.950

2 6 4 360.570

2 6 5 362.104

2 6 6 371.829

2 7 1 324.161

2 7 2 340.130

2 7 3 334.580

2 7 4 342.813

2 7 5 327.415

2 7 6 333.571

2 8 1 338.742

2 8 2 340.348

2 8 3 362.837

2 8 4 340.782

2 8 5 348.730

2 8 6 325.444

3 9 1 387.868

3 9 2 372.807

3 9 3 380.505

3 9 4 391.804

3 9 5 388.935

3 9 6 361.860

3 10 1 377.948

3 10 2 380.033

3 10 3 361.913

3 10 4 363.098

3 10 5 365.375

3 10 6 382.121

3 11 1 363.583
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3 11 2 387.727

3 11 3 373.021

3 11 4 362.931

3 11 5 378.928

3 11 6 364.442

3 12 1 374.851

3 12 2 361.291

3 12 3 377.389

3 12 4 366.722

3 12 5 374.187

3 12 6 380.383

;

proc glm;

classes trt tree;

model wt = trt tree(trt);

random tree(trt)/test;

contrast 'SS trt' trt 1 -1 0 tree(trt) .25 .25 .25 .25

-.25 -.25 -.25 -.25 0 0 0 0,

trt 1 0 -1 tree(trt) .25 .25 .25 .25

0 0 0 0 -.25 -.25 -.25 -.25/E=tree(trt);

lsmeans trt/stderr pdiff e=tree(trt) adjust=bon;

run;

quit;

USING SAS/PROC MIXED

proc mixed data=subsamp1;

classes trt tree;

model wt = trt;

random tree(trt);

lsmeans trt/adjust=scheffe;

/* NOTE, in proc mixed we ONLY specify the fixed effects parts

in the ESTIMATE statements. There is no need to include

coefficients for the random part, proc mixed 'knows'

about the random effects correctly and automagically!

*/

estimate 'trt 1 - 2' trt 1 -1 0;

estimate 'trt 1 - 3' trt 1 0 -1;

estimate 'trt 2 - 3' trt 0 1 -1;

run;

quit;
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27.11 SAS output

The SAS System

The GLM Procedure

Class Level Information

Class Levels Values

trt 3 1 2 3

tree 12 1 2 3 4 5 6 7 8 9 10 11 12

Number of observations 72
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The SAS System

The GLM Procedure

Dependent Variable: wt

Source DF Sum of Squares Mean Square F Value Pr > F

Model 11 24127.21374 2193.38307 23.84 <.0001

Error 60 5520.69496 92.01158

Corrected Total 71 29647.90869

R-Square Coe� Var Root MSE wt Mean

0.813791 2.730251 9.592267 351.3328

Source DF Type I SS Mean Square F Value Pr > F

trt 2 20747.03666 10373.51833 112.74 <.0001

tree(trt) 9 3380.17708 375.57523 4.08 0.0004
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The SAS System

The GLM Procedure

Source Type I Expected Mean Square

trt Var(Error) + 6 Var(tree(trt)) + Q(trt)

tree(trt) Var(Error) + 6 Var(tree(trt))
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The SAS System

The GLM Procedure

Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: wt

Source DF Type I SS Mean Square F Value Pr > F

trt 2 20747 10374 27.62 0.0001

Error: MS(tree(trt)) 9 3380.177080 375.575231

Source DF Type I SS Mean Square F Value Pr > F

tree(trt) 9 3380.177080 375.575231 4.08 0.0004

Error: MS(Error) 60 5520.694957 92.011583
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The SAS System

Least Squares Means

Adjustment for Multiple Comparisons: Bonferroni

Standard Errors and Probabilities Calculated Using the Type I MS for tree(trt) as an

Error Term

trt wt LSMEAN Standard Error Pr > |t| LSMEAN Number

1 333.472833 3.955878 <.0001 1

2 346.370458 3.955878 <.0001 2

3 374.155083 3.955878 <.0001 3

Pr > |t| for H0: LSMean(i)=LSMean(j)Dep. Variable: wt

i/j 1 2 3

1 0.1398 0.0001

2 0.1398 0.0023

3 0.0001 0.0023
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The SAS System

Dependent Variable: wt

Tests of Hypotheses Using the Type I MS for tree(trt) as an Error Term

Contrast DF Contrast SS Mean Square F Value Pr > F

SS trt 2 20747.03666 10373.51833 27.62 0.0001
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The SAS System

The Mixed Procedure

Model Information

Data Set WORK.SUBSAMP1

Dependent Variable wt

Covariance Structure Variance Components

Estimation Method REML

Residual Variance Method Pro�le

Fixed E�ects SE Method Model-Based

Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

trt 3 1 2 3

tree 12 1 2 3 4 5 6 7 8 9 10 11 12

Dimensions

Covariance Parameters 2

Columns in X 4

Columns in Z 12

Subjects 1

Max Obs Per Subject 72

Observations Used 72

Observations Not Used 0

Total Observations 72

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 540.67374301

1 1 530.01867630 0.00000000

Convergence criteria met.
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Covariance Parameter Estimates

Cov Parm Estimate

tree(trt) 47.2606

Residual 92.0116

Fit Statistics

-2 Res Log Likelihood 530.0

AIC (smaller is better) 534.0

AICC (smaller is better) 534.2

BIC (smaller is better) 535.0

Type 3 Tests of Fixed E�ects

E�ect Num DF Den DF F Value Pr > F

trt 2 9 27.62 0.0001

Estimates

Label Estimate Standard Error DF t Value Pr > |t|

trt 1 - 2 -12.8976 5.5945 9 -2.31 0.0466

trt 1 - 3 -40.6823 5.5945 9 -7.27 <.0001

trt 2 - 3 -27.7846 5.5945 9 -4.97 0.0008

Least Squares Means

E�ect trt Estimate Standard Error DF t Value Pr > |t|

trt 1 333.47 3.9559 9 84.30 <.0001

trt 2 346.37 3.9559 9 87.56 <.0001

trt 3 374.16 3.9559 9 94.58 <.0001

Di�erences of Least Squares Means

E�ect trt _trt Estimate Standard Error DF t Value Pr > |t| Adjustment Adj P

trt 1 2 -12.8976 5.5945 9 -2.31 0.0466 Sche�e 0.1239

trt 1 3 -40.6823 5.5945 9 -7.27 <.0001 Sche�e 0.0002

trt 2 3 -27.7846 5.5945 9 -4.97 0.0008 Sche�e 0.0026
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27.12 Using Group Means

One could consider using the mean of the 6 apples as the observation and hence having 12

observations, 4 per diet, and hence a linear model:

Yij = µ+ trti + eij

This model would be adaquate to test whether there were di�erences between the

treatments.

Why then should we go to the bother of a subsampling model for our analysis?

Why not simply average the 6 individual weights and be done with it?

Well there are several reasons.

1. We may not have the same number of subsamples (apples) on each tree, hence using

the mean would cause the variances to be non-homogeneous

2. We may want to know the variability between apples and between trees, so that we

will be able to plan the optimal allocation for subsequent trials, see STD, Ch 7.9.

3. We will need this information when we design experiments where there is subsam-

pling; to determine how many experimental units we need.

4. The variation from experimental unit to experimental unit, vs the variation amongst

sub-samples may well be biologically quite interesting in its own right, over and above any

di�erences amongst treatments!

27.13 Expectation of Mean Squares

Steel, Torrie and Dickey, Ch. 7.6, page 157, and Table 7.9, page 163

Treatment �xed, tree random

Source of Variation df Expected Mean Square
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Treatment a-1 σ2
e + cσ2

tree + bc
∑

α2/(a− 1)

Tree a(b-1) σ2
e + cσ2

tree

Residual ab(c-1) σ2
e

1) If σ2
e is large relative to σ2

tree then several samples per tree is bene�cial.

2) If σ2
e is small relative to σ2

tree the use only a few samples and have more experimental

units per treatment, i.e. more trees per treatment.
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28 Factorial Experiments

STD. Ch.15. P352

When we have two or more factors, with two or more levels each, and we want to

see if the e�ects of the factors are simply additive, or whether there is an 'interaction'.

An 'interaction', between 2 factors (A and B for example) means that the e�ect of the

di�erence between the levels of A (for example A1 −A2) depends upon the level of B, i.e.

that the e�ects A and B are not independent of one another. In other words they interact

with each other; hence the concept of 'interaction'.

Suppose that we are looking at the storage ability of potato stores built by 3 di�erent

companies and at 2 di�erent chemical treatments used for treating potatoes as they are

put into storage to help them keep longer before sprouting. So we have 2 factors to look

at: Company and Treatment. We think that there may be an 'interaction' between the

e�ects of the di�erent companies' stores and the di�erent treatments so we arrange to have

several buildings from each Company on each Treatment. This type of design is what is

known as a "Factorial Experiment" and allows us to examine for interaction e�ects. In

this case, with Company having 3 levels and Treatment having 2 levels we say that it is a

3x2 Factorial; there are 6 combinations.

We have 6 buildings of Company I, 5 buildings of Company II and 5 buildings stores of

Company III. The 2 treatments (1 and 2) will be randomly split amongst the 6 Company

I buildings, for Company II and III we have 3 buildings on treatment 1 and 2 buildings on

treatment 2.
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��QQ
6.7
trt 1

��QQ
7.0
trt 2

��QQ
7.2
trt 1

��QQ
7.5
trt 1

��QQ
7.2
trt 2

��QQ
7.2
trt 2

Company I

��QQ
7.0
trt 1

��QQ
7.3
trt 1

��QQ
7.7
trt 2

��QQ
6.0
trt 1

��QQ
7.9
trt 2

Company II

��QQ
7.1
trt 2

��QQ
6.1
trt 1

��QQ
7.3
trt 2

��QQ
6.4
trt 1

��QQ
7.2
trt 1

Company III

28.1 Observations

Trt

1 2

1 6.7, 7.2 7.0, 7.2

7.5 7.2

Store

Company 2 7.0, 7.3 7.7, 7.9

6.0

3 6.1, 6.4 7.1, 7.3

7.2

28.2 SAS code for Data Step

data fac1;

/* Assume s = Store, t = Treatment */

input s t y;

cards;

1 1 6.7

1 1 7.2
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1 1 7.5

1 2 7.0

1 2 7.2

1 2 7.2

2 1 7.0

2 1 7.3

2 1 6.0

2 2 7.7

2 2 7.9

3 1 6.1

3 1 6.4

3 1 7.2

3 2 7.1

3 2 7.3

;

28.3 Linear model

We can consider that there is an e�ect of the actual building (the experimental unit =,

nested within store*trt) as well as the sampling error.

Yijk = µ+ storei + trtj + store ∗ trtij + buildingijk + ϵijk

However, as we have previously noted, since we have only 1 measurement per building

(experimental unit) we cannot separate the building e�ect from the sampling e�ect; they

are 'confounded'. Thus we shall 'lump' them together into the error. The error can be

considered to be the experimental unit error term and is the variation amongst buildings

within store*trt.

Yijk = µ+ storei + trtj + store ∗ trtij + eijk
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28.4 Parameters of the Model

µ, s1, s2, s3, t1, t2, s1t1, s1t2, s2t1, s2t2, s3t1, s3t2, σ2
e

28.5 Linear model in Matrix Notation

Y = Xb+ e

Y111

Y112

.

.

Y121

.

.

.

Y211

.

.

Y221

.

.

Y322



=



µ s1 s2 s3 t1 t2 s1t1 s1t2 s2t1 s2t2 s3t1 s3t2

1 1 0 0 1 0 1 0 0 0 0 0

1 1 0 0 1 0 1 0 0 0 0 0

.

.

1 1 0 0 0 1 0 1 0 0 0 0

.

.

.

1 0 1 0 1 0 0 0 1 0 0 0

.

.

1 0 1 0 0 1 0 0 0 1 0 0

.

.

1 0 0 1 0 1 0 0 0 0 0 1


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

µ

s1

s2

s3

t1

t2

s1t1

s1t2

s2t1

s2t2

s3t1

s3t2



+



e111

e112

.

.

e121

.

.

.

e211

.

.

e221

.

.

e322



28.6 Normal Equations

X ′Xb̃ = X ′Y

16 6 5 5 9 7 3 3 3 2 3 2

6 6 0 0 3 3 3 3 0 0 0 0

5 0 5 0 3 2 0 0 3 2 0 0

5 0 0 5 3 2 0 0 0 0 3 2

9 3 3 3 9 0 3 0 3 0 3 0

7 3 2 2 0 7 0 3 0 2 0 2

3 3 0 0 3 0 3 0 0 0 0 0

3 3 0 0 0 3 0 3 0 0 0 0

3 0 3 0 3 0 0 0 3 0 0 0

2 0 2 0 0 2 0 0 0 2 0 0

3 0 0 3 3 0 0 0 0 0 3 0

2 0 0 2 0 2 0 0 0 0 0 22





µ̃

s̃1

s̃2

s̃3

t̃1

t̃2
˜s1t1
˜s1t2
˜s2t1
˜s2t2
˜s3t1
˜s3t2



=



112.8

42.8

35.9

34.1

61.4

51.4

21.4

21.4

20.3

15.6

19.7

14.4


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28.7 Solution to the linear model

b̃ = (X ′X)−X ′Y



µ̃

s̃1

s̃2

s̃3

t̃1

t̃2
˜s1t1
˜s1t2
˜s2t1
˜s2t2
˜s3t1
˜s3t2



=



7.2

−0.66666

0.60

0.00

−0.63333

0.00

0.63333

0.00

−0.400

0.00

0.00

0.00



28.7.1 SAS code for Factorial model

/* Assume s = Store, t = Treatment */

proc glm;

classes s t;

model y = s t s*t;

run;
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28.8 Basic Analysis of Variance

ANOVA

Source df SS MS F − ratio E(MS)

Total, N = 16 Y ′Y

TSS 799.36

Model, r(X) b̃′X ′Y 132.99 974∗∗

SSR = 6 797.995

Mean, 1 Nȳ2 795.24 5825.9∗∗

C.F. 795.24

Model, after r(X)− 1 b̃′X ′Y −Nȳ2

the mean, SSRm = 5 2.755 0.551 4.037 σ2
e +Q(s, t, st)

R(t, s, t ∗ s | Mean)

Error, N − r(X) Y ′Y − b̃′X ′Y 0.1365 σ2
e

SSE 10 1.365

28.9 Hypotheses of Interest

1) Ho the levels of Store are all equal, i.e. e�ects1 = e�ects2 = e�ects3
vs HA the levels of Store are not all equal

2) Ho the levels of Treatment are all equal, i.e. TrtA = TrtB

vs HA the levels of Treatment are not all equal; TrtA ̸= TrtB

3) Ho the interaction e�ects are all equal

i.e. a1b1 = a1b2 = a2b1 = a2b2

vs HA the interaction e�ects are not all equal
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28.10 Derivation of Testable Hypotheses

What exactly is estimable and testable, how and why? As always we can, and should,

start from the fact that the '�tted values' are estimable and that anything and everything

that is estimable can be and must be able to be written as a linear function of the '�tted

values' and the appropriate k' matrix. Thus Ŷ = Xb̃.

So Ŷ11 = µ̃+ s̃1 + t̃1 + ˜s1t1

k
′
11 = ( 1 1 0 0 1 0 1 0 0 0 0 0 )

Ŷ12 = µ̃+ s̃1 + t̃2 + ˜s1t2

k
′
12 = ( 1 1 0 0 0 1 0 1 0 0 0 0 )

Ŷ21 = µ̃+ s̃2 + t̃1 + ˜s2t1

k
′
21 = ( 1 0 1 0 1 0 0 0 1 0 0 0 )

Ŷ22 = µ̃+ s̃2 + t̃2 + ˜s2t2

k
′
22 = ( 1 0 1 0 0 1 0 0 0 1 0 0 )

Ŷ31 = µ̃+ s̃3 + t̃1 + ˜s3t1

k
′
31 = ( 1 0 0 1 1 0 0 0 0 0 1 0 )

Ŷ32 = µ̃+ s̃3 + t̃2 + ˜s3t2

k
′
32 = ( 1 0 0 1 0 1 0 0 0 0 0 1 )

28.10.1 SAS code for Fitted values

/* Assume s = Store, t = Treatment,

Note how each statement goes to another line, terminated

by a semi-colon

*/

estimate 'mu + s1 + t1 + s1t1' intercept 1 s 1 0 0 t 1 0

s*t 1 0 0 0 0 0;

estimate 'mu + s1 + t2 + s1t2' intercept 1 s 1 0 0 t 0 1

s*t 0 1 0 0 0 0;
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estimate 'mu + s2 + t1 + s2t1' intercept 1 s 0 1 0 t 1 0

s*t 0 0 1 0 0 0;

estimate 'mu + s2 + t2 + s2t2' intercept 1 s 0 1 0 t 0 1

s*t 0 0 0 1 0 0;

estimate 'mu + s3 + t1 + s3t1' intercept 1 s 0 0 1 t 1 0

s*t 0 0 0 0 1 0;

estimate 'mu + s3 + t2 + s3t2' intercept 1 s 0 0 1 t 0 1

s*t 0 0 0 0 0 1;

28.10.2 Factor Store

Let us look at comparison(s) between levels of Factor Store, to see just what is estimable

and what the suitable contrasts are.

We can see, from the section above, that Ŷ11 and Ŷ12 are both estimable, hence a linear

function of them (their sum) is also estimable, i.e. Ŷ11 + Ŷ12 and estimates:

Ŷ11 + Ŷ12 = 2µ̃+ 2s̃1 + t̃1 + t̃2 + ˜s1t1 + ˜s1t2

k
′

= ( 2 2 0 0 1 1 1 1 0 0 0 0)

Averaging, to bring it back to a 'per-unit' basis we get

(Ŷ11 + Ŷ12)/2 = µ̃+ s̃1 +
1

2
t̃1 +

1

2
t̃2 +

1

2
˜s1t1 +

1

2
˜s1t2

and k
′

1 = ( 1 1 0 0
1

2

1

2

1

2

1

2
0 0 0 0 )

Similarly for Ŷ21 + Ŷ22

Ŷ21 + Ŷ22 = 2µ̃+ 2s̃2 + t̃1 + t̃2 + ˜s2t1 + ˜s2t2

again, averaging to bring us back to a 'per-unit' basis we get

(Ŷ21 + Ŷ22)/2 = µ̃+ s̃2 +
1

2
t̃1 +

1

2
t̃2 +

1

2
˜s2t1 +

1

2
˜s2t2
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and k
′

2 = ( 1 0 1 0
1

2

1

2
0 0

1

2

1

2
0 0 )

Similarly for Ŷ31 + Ŷ32

Ŷ31 + Ŷ32 = 2µ̃+ 2s̃3 + t̃1 + t̃2 + ˜s3t1 + ˜s3t2

again, averaging to bring us back to a 'per-unit' basis we get

(Ŷ31 + Ŷ32)/2 = µ̃+ s̃2 +
1

2
t̃1 +

1

2
t̃2 +

1

2
˜s3t1 +

1

2
˜s3t2

and k
′

3 = ( 1 0 0 1
1

2

1

2
0 0 0 0

1

2

1

2
)

k
′
1, k

′
2 and k

′
2 provide linear functions of the �tted values, therefore their di�erences

will also be linear functions of the �tted values and hence estimable.

k
′

1 = ( 1 1 0 0
1

2

1

2

1

2

1

2
0 0 0 0 )

−k
′

2 = ( 1 0 1 0
1

2

1

2
0 0

1

2

1

2
0 0 )

k
′

1−2 = ( 0 1 − 1 0 0 0
1

2

1

2
− 1

2
− 1

2
0 0 )

This estimates

(s̃1 − s̃2 +
1

2
˜s1t1 +

1

2
˜s1t2 −

1

2
˜s2t1 −

1

2
˜s2t2)

Likewise

k
′

1 = ( 1 1 0 0
1

2

1

2

1

2

1

2
0 0 0 0 )

−k
′

3 = ( 1 0 0 1
1

2

1

2
0 0 0 0

1

2

1

2
)

k
′

1−3 = ( 0 1 0 − 1 0 0
1

2

1

2
0 0 − 1

2
− 1

2
)

This estimates

(s̃1 − s̃3 +
1

2
˜s1t1 +

1

2
˜s1t2 −

1

2
˜s3t1 −

1

2
˜s3t2)

This is the best that we can do to test the hypothesis that the stores are equal; i.e.:
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s1 = s2

s1 = s3

It illustrates the very important point that with an interaction component implicating

Factor*Store we cannot completely remove the interaction e�ects! Hence, if the Null

Hypothesis for the interaction cannot be accepted, then the Sums of Squares for Stores

will not be free of some e�ects of the interaction. Thus we shall not know if the Sums of

Squares for Stores is really due to the main e�ect of Store and/or due to the e�ects of the

interaction.

Combining the 2 k
′
matrices ( k

′
1−2 and k

′
1−3 ) as 2 rows we get

k
′
=

 0 1 −1 0 0 0 .5 .5 −.5 −.5 0 0

0 1 0 −1 0 0 .5 .5 0 0 −.5 −.5



Using this k
′
matrix we can compute the Sums of Squares for Factor Store. Note that

since we have 3 levels of Store there are 2 degrees of freedom between levels of Store. If

we had more than 3 levels of A we would have (a-1) linearly independent comparisons (a

being the number of levels of this factor) and proceed accordingly.

28.10.3 SAS CONTRAST code for Store

/* Marginal, Type III, Sums of Squares for Stores */

contrast 'Stores' s 1 -1 0 s*t .5 .5 -.5 -.5 0 0,

s 1 0 -1 s*t .5 .5 0 0 -.5 -.5;

28.10.4 Factor Treatment

Let us look at comparison(s) between levels of Factor Treatment, to see just what is

estimable and what the suitable contrasts are.
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We can see, from the above section on �tted values, that Ŷ11, Ŷ21 and Ŷ31 are all

estimable, hence a linear function of them (their sum) is also estimable, i.e. Ŷ11+ Ŷ21+ Ŷ31

and estimates:

Ŷ11 + Ŷ21 + Ŷ31 = 3µ̃+ s̃1 + s̃2 + s̃3 + 3t̃1 + ˜s1t1 + ˜s2t1 + ˜s3t1

k
′

= ( 3 1 1 1 3 0 1 0 1 0 1 0 )

Averaging, to bring it back to a 'per-unit' basis we get

(Ŷ11 + Ŷ21 + Ŷ31)/3 = µ̃+
1

3
s̃1 +

1

3
s̃2 +

1

3
s̃3 + t̃1 +

1

3
˜s1t1 +

1

3
˜s2t1 +

1

3
˜s3t1

and k
′

1 = ( 1
1

3

1

3

1

3
1 0

1

3
0

1

3
0

1

3
0 )

Similarly, Ŷ12, Ŷ22 and Ŷ32 are all estimable, hence a linear function of them (their sum)

is also estimable, i.e. Ŷ12 + Ŷ22 + Ŷ32 and estimates:

Ŷ12 + Ŷ22 + Ŷ32 = 3µ̃+ s̃1 + s̃2 + s̃3 + 3t̃2 + ˜s1t2 + ˜s2t2 + ˜s3t2

k
′

= ( 3 1 1 1 0 3 0 1 0 1 0 1 )

Averaging, to bring it back to a 'per-unit' basis we get

(Ŷ12 + Ŷ22 + Ŷ32)/3 = µ̃+
1

3
s̃1 +

1

3
s̃2 +

1

3
s̃3 + t̃2 +

1

3
˜s1t2 +

1

3
˜s2t2 +

1

3
˜s3t2

and k
′

2 = ( 1
1

3

1

3

1

3
0 1 0

1

3
0

1

3
0

1

3
)

k
′
1 and k

′
2 provide linear functions of the �tted values, therefore their di�erence will

also be a linear function of the �tted values and hence estimable.

k
′

1 = ( 1
1

3

1

3

1

3
1 0

1

3
0

1

3
0

1

3
0 )

−k
′

2 = ( 1
1

3

1

3

1

3
0 1 0

1

3
0

1

3
0

1

3
)
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k
′

1−2 = ( 0 0 0 0 1 − 1
1

3
− 1

3

1

3
− 1

3

1

3
− 1

3
)

With this k
′
matrix we can compute the Sums of Squares for Treatments. One problem

is that in the above we have written 1
3
; however, for SAS we have to write the coe�cients

as decimals, and 1
3
cannot be expressed exactly as a decimal. A solution is to scale this up

to the Lowest Common Multiple, i.e. multiple all the coe�cients by 3.

28.10.5 SAS CONTRAST code for Treatments

/* Marginal, Type III, Sums of Squares for Treatments */

contrast 'Treatments' t 3 -3 s*t 1 -1 1 -1 1 -1;

28.10.6 Store*Treatment Interaction

What about the interaction? The interaction measures whether the di�erences between t1

and t2 are the same at each of the 3 di�erent levels of Store. Graphically we can represent

these as:
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Ŷ11 = µ̃+ s̃1 + t̃1 + ˜s1t1 Ŷ12 = µ̃+ s̃1 + t̃2 + ˜s1t2

Ŷ21 = µ̃+ s̃2 + t̃1 + ˜s2t1 Ŷ22 = µ̃+ s̃2 + t̃2 + ˜s2t2

Ŷ31 = µ̃+ s̃3 + t̃1 + ˜s3t1 Ŷ32 = µ̃+ s̃3 + t̃2 + ˜s3t2

28.10.7 Degrees of freedom for the A*B Interaction

How many degrees of freedom are there for the interaction? In general, if we have a

levels of Factor A and b levels of Factor B, so that we have a*b di�erent combinations

(i.e. no combinations are missing) tne we will have (a-1)*(b-1) degrees of freedom. This

corresponds to the (a-1)*(b-1) linearly independent di�erent contrasts, or comparisons,

between di�erences. If we have any missing cells (combinations) then the degrees of freedom

will be further reduced by the number of missing combinations. So in the above example

we have a 3*2 factorial, which means that we have (3-1)*(2-1) = 2 degrees of freedom

for the interaction. If we had no observations for Store 1, Treatment 1, then the degrees

of freedom for the Interaction would be reduced by 1, to leave us with 1 d.f. for the

Interaction!
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28.10.8 Sums of Squares for the A*B Interaction

We have de�ned that the interaction measures the di�erences of the di�erences; i.e. we

are looking to test whether the main e�ects are simply additive in action (no interaction),

or whether their action is not simply additive in action (an interaction). So we need to

look at the di�erences between treatments at each level of Store Company and see whether

those di�erences are the same or whether they are su�ciently di�erent from oneanother

to conclude that there is an interaction. That is to say, if the di�erences amongst the

di�erences are small then they would be consistent with the Null Hypothesis (H0), that

the interaction e�ects are all equal, i.e. what we commonly mean when we say that

there was no interaction; whereas if the di�erences amongst the di�erences are larger than

could reasonably be expected to arise by chance when Ho is true, the we should reject Ho

and accept the Alternative Hypothesis (HA), that there is an interaction, i.e. that the

interaction e�ects are not all equal. Thus (Ŷ11 − Ŷ12) represents the di�erence between

(Store1, Treatment1 and Store1-by-Treatment1) and (Store1, Treatment2 and Store1-by-

Treatment2), i.e.

Ŷ11 − Ŷ12 = (µ̃+ s̃1 + t̃1 + ˜s1t1)

− (µ̃+ s̃1 + t̃2 + ˜s1t2)

= (t̃1 − t̃2 + ˜s1t1 − ˜s1t2)

If we similarly look at (Ŷ21− Ŷ22) we can see that this represents the di�erence between

(Store2, Treatment1 and Store2-by-Treatment1) and (Store2, Treatment2 and Store2-by-

Treatment2), i.e.

Ŷ21 − Ŷ22 = (µ̃+ s̃2 + t̃1 + ˜s2t1)

− (µ̃+ s̃2 + t̃2 + ˜s2t2)

= (t̃1 − t̃2 + ˜s2t1 − ˜s2t2)

Then the di�erence between these 2 di�erences is one of the 2 comparisons we need for

our Interaction CONTRAST. Thus

(t̃1 − t̃2 + ˜s1t1 − ˜s1t2)
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− (t̃1 − t̃2 + ˜s2t1 − ˜s2t2)

= ( ˜s1t1 − ˜s1t2 − ˜s2t1 + ˜s2t2)

Thus a suitable k
′
matrix would be

k
′
=
(
0 0 0 0 0 0 1 −1 −1 1 0 0

)

Which could be written as a SAS CONTRAST statement as:

/* Marginal, Type III, Sums of Squares for 1st Interaction */

contrast 'S1T1-S1T2-S2T1+S2T2' s*t 1 -1 -1 1 0 0;

Similarly, if we look at (Ŷ31− Ŷ32) we can see that this represents the di�erence between

(Store3, Treatment1 and Store3-by-Treatment1) and (Store3, Treatment2 and Store3-by-

Treatment2), i.e.

Ŷ31 − Ŷ32 = (µ̃+ s̃3 + t̃1 + ˜s3t1)

− (µ̃+ s̃3 + t̃2 + ˜s3t2)

= (t̃1 − t̃2 + ˜s3t1 − ˜s3t2)

Then the di�erence between this di�erence and our �rst di�erence is the second of the

2 comparisons we need for our Interaction CONTRAST. Thus

(t̃1 − t̃2 + ˜s1t1 − ˜s1t2)

− (t̃1 − t̃2 + ˜s3t1 − ˜s3t2)

= ( ˜s1t1 − ˜s1t2 − ˜s3t1 + ˜s3t2)

Thus a suitable k
′
matrix would be

k
′
=
(
0 0 0 0 0 0 1 −1 0 0 −1 1

)

Which could be written as a SAS CONTRAST statement as:
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/* Marginal, Type III, Sums of Squares for 2nd Interaction */

contrast 'S1T1-S1T2-S3T1+S3T2' s*t 1 -1 0 0 -1 1;

Then we can combine these 2 single degree of freedom contrasts together into a 2

degrees of freedom contrast:

28.10.9 SAS CONTRAST code for Interaction

/* Marginal, Type III, Sums of Squares for Interactions */

contrast 'Interaction' s*t 1 -1 -1 1 0 0,

s*t 1 -1 0 0 -1 1;
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28.11 Analysis of Variance, partitioned

Analysis of V ariance

Source df SS MS F − ratio

Total, N = 16 Y ′Y

TSS 799.36

Model, r(X) b̃′X ′Y 132.99 974∗∗

SSR = 6 797.995

Mean, 1 Nȳ2 795.24 5825.9∗∗

C.F. 795.24

Model, after r(X)− 1 b̃′X ′Y −Nȳ2

the mean, SSRm = 5 2.755 0.551 4.037

R(t, s, t ∗ s | Mean)

R(t | µ, s) 1 1.6858 1.6858 12.35∗∗

R(s | µ, t) 2 0.8098 0.4049 2.97n.s.s.

R(t ∗ s | µ, t, s) 2 0.9119 0.4560 3.347n.s.s.

Error, N − r(X) Y ′Y − b̃′X ′Y 0.1365

SSE 10 1.365

WHAT DOES AN INTERACTION MEAN? STD, Page 352-358

That the di�erences between Treatments 1 and 2 are not the same at the di�erent

company stores. Also that the di�erences between company stores di�er for Treatment 1

or 2.

The following sentences refer to the case where the 2 factors (A and B) are both

considered as FIXED e�ects, i.e. we are interested in these speci�ed levels of A and B and

we are not and can not generalize to any other levels of A or B!

If the interaction is statistically signi�cant then the main e�ects have little meaning or

sense.

i.e. examine trt * store means and di�erences, "Simple E�ects".
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5 d.f., 5 comparisons, must be linearly independent.

If the interaction is n.s.s. then we can look at the main e�ects.

28.12 Expectation of Mean Squares

What are the expectations of the Mean Squares? What are/is the appropriate error term

and which e�ects can we test?

These will depend upon whether the various factors are �xed and/or random. This is

one of the major reasons why it is important to understand whether a factor is a random

e�ect or not (and whether the sampling was hence random with respect to that factor!!!!).

See STD Ch 15.5 for a discussion of the computation of the expectations of the Mean

Squares.

Both factors (A and B) �xed

Source of Variation df Expected Mean Square

A a-1 σ2
e + b

∑
α2
i /(a− 1)

B b-1 σ2
e + a

∑
β2
j /(b− 1)

A*B (a-1)(b-1) σ2
e + r

∑
(αβ)2ij/(a− 1)(b− 1)

Residual ab(c-1) σ2
e

In the above case (both A and B are �xed e�ectss), then all the terms (A, B, and A*B)

are tested against the MSE.

Both factors (A and B) random

Source of Variation df Expected Mean Square

A a-1 σ2
e + cσ2

αβ + bcσ2
α

B b-1 σ2
e + cσ2

αβ + acσ2
β

A*B (a-1)(b-1) σ2
e + cσ2

αβ

Residual ab(c-1) σ2
e

In the above case then MS A*B is tested against the MSE, and both MS A and MS B

will be tested against the MS A*B.
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Mixed. A �xed, B random => AB = random

Source of Variation df Expected Mean Square

A a-1 σ2
e + cσ2

αβ + bc
∑

α2/(a− 1)

B b-1 σ2
e + cσ2

αβ + acσ2
β

A*B (a-1)(b-1) σ2
e + cσ2

αβ

Residual ab(c-1) σ2
e

In the above case then MS A*B is tested against the MSE, and both MS A and MS

B will be tested against the MS A*B. Note further, that any tests relating to Factor A

(�xed e�ects), lsmeans, di�erences amongst the levels of A, etc, will use the MS A*B as

the 'Error' Mean Square.

Note the vaste di�erence this makes in terms of which e�ects can be tested, and against

which mean squares. This is another reason why the use of PROC MIXED in SAS is most

strongly recommended. IF the 2 e�ects are �xed then we �rst test the interaction. IFF the

interaction is not statistically signi�cant is it meaningful to test the main e�ects. IF at least

one of the e�ects is a random e�ect, then the interaction will be random, in which case it

becomes the 'error' term for testing the main e�ects of A and B; in this case then whether

or not the A*B interaction is signi�cant or not it will still, and always, be appropriate and

meaningful to test the A and B main e�ects.

/* Example: Assume A = fixed, B = random */

proc mixed;

class A B;

model y = A/ddfm=kr;

random B A*B;

lsmeans A/pdiff adjust=bon;

run;

28.12.1 SAS code for LSMeans

/* Assume s = Store, t = Treatment */

lsmeans s t/stderr;
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lsmeans s*t/stderr pdiff adjust=scheffe;

run;

Using the original de�nition of Least Squares Means given in the context of a Two-Way

ANOVA extend this to a Factorial model and try and derive the above Least Squares

Means, so that you can take the solution vector (b̃) and construct a k
′
vector to compute

the LSMeans. Verify that you get the SAME answers as SAS!
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29 Latin Square

See Steel, Torrie and Dickey, Ch 9.10, P227

Consider an example with crops. We have 5 treatments to test and we think/know that

there is systematic variability across both rows and columns; so we want to try and control

for this. We could lay out the 5 treatments in the following manner. Arrange treatments

in block in 2 ways by rows and columns

trt3

Yield

= 4.54
trt5

Yield

= 4.54
trt2

Yield

= 4.00
trt1

Yield

= 2.34
trt4

Yield

= 4.94

trt5

Yield

= 4.50
trt2

Yield

= 3.90
trt4

Yield

= 4.98
trt3

Yield

= 4.61
trt1

Yield

= 2.60

trt1

Yield

= 2.79
trt3

Yield

= 4.82
trt5

Yield

= 4.84
trt4

Yield

= 5.01
trt2

Yield

= 4.14

trt2

Yield

= 4.00
trt4

Yield

= 4.75
trt1

Yield

= 2.30
trt5

Yield

= 4.73
trt3

Yield

= 4.74

trt4

Yield

= 4.50
trt1

Yield

= 2.05
trt3

Yield

= 4.31
trt2

Yield

= 3.85
trt5

Yield

= 4.74

Often used in �eld experiments with crops.
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Another example in animals, consider that we want to test 5 diets to look at their

e�ects on intake. We know that there is substantial variability between animals in intake

so we want to use each diet on each animal, so that the di�erences between animals will

not contribute to between diet di�erences. BUT, there are also time e�ects (period) which

cannot be ignored. So we use the following Latin Square layout:

Period 1 Period 2 Period 3 Period 4 Period 5

Trt 1

Trt 2

Trt 3

Trt 4

Trt 5

Animal3

Intake

= 4.54
Animal5

Intake

= 4.54
Animal2

Intake

= 4.00
Animal1

Intake

= 2.34
Animal4

Intake

= 4.94

Animal5

Intake

= 4.50
Animal2

Intake

= 3.90
Animal4

Intake

= 4.98
Animal3

Intake

= 4.61
Animal1

Intake

= 2.70

Animal1

Intake

= 2.69
Animal3

Intake

= 4.82
Animal5

Intake

= 4.84
Animal4

Intake

= 5.01
Animal2

Intake

= 4.14

Animal2

Intake

= 4.00
Animal4

Intake

= 4.75
Animal1

Intake

= 2.30
Animal5

Intake

= 4.73
Animal3

Intake

= 4.74

Animal4

Intake

= 4.50
Animal1

Intake

= 2.05
Animal3

Intake

= 4.31
Animal2

Intake

= 3.85
Animal5

Intake

= 4.74

Latin square does not permit of any interaction amongst rows, columns or treatments!!

If you think that there is an interaction DO NOT USE. Also if variances change!

Disadvantages of Latin Square: Numbers of rows, columns and treatments must be

equal.
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29.1 Linear Model

Linear model for crop example

Yij(k) = µ+ ri + cj + trt(k) + plot(r c trt)ij(k) + ϵij(k)

Linear model for animal example

Yij(k) = µ+ periodi + trtj + animal(k) + exp(period trt animal)ij(k) + ϵij(k)

For the crop/soil example we must note that the plot which is nested within row, within

column and within treatment, i.e. plot(r c trt), cannot be dissociated from the random

error ϵ, since there is only one measurement per row, column, treatment combination.

Likewise, for the animal example, we have only 1 measurement for each period, treatment,

animal combination, thus the exp(erimental unit) within period, animal and treatment is

confounded with ϵ, and hence again, we shall combine these 2 terms together into an 'error'

term (e). However, we should remember that plot is in fact nested within treatment, and

nested within row, and nested within column. Note also, that if there was an interaction

between row and column (for example) we would note that there is only 1 experimental unit

for each row*column combination and that hence the row*column interaction is confounded

with the experimental unit (plot). This illustrates why we have noted that a Latin squares

does not allow of an interaction between the 3 e�ects.

Thus, our linear model for the crop example will be:

Yij(k) = µ+ ri + cj + trt(k) + eij(k)

and our linear model for the animal example will be:

Yij(k) = µ+ periodi + trtj + animal(k) + eij(k)

Let us analyse the animal example. We can set up our linear model as Y = Xb+ e, as
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usual, with columns of X for the mean, for the period, treatment and animal e�ects, thus:

Y11(4)

Y21(1)

Y31(3)

Y41(2)

Y51(5)

Y12(2)

Y22(4)

Y32(1)

Y42(5)

Y52(3)

Y13(1)

Y23(3)

Y33(5)

Y43(4)

Y53(2)

Y14(5)

Y24(2)

Y34(4)

Y44(3)

Y54(1)

Y15(3)

Y25(5)

Y35(2)

Y45(1)

Y55(4)



=



µ p1 p2 p3 p4 p5 trt1 trt2 trt3 trt4 trt5 a1 a2 a3 a4 a5

1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0

1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0

1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0

1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0

1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1

1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0

1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1

1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0

1 0 0 0 0 5 0 0 1 0 0 0 1 0 0 0

1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1

1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0

1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0

1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0

1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0

1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0

1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0





µ

period1
period2
period3
period4
period5
trt1
trt2
trt3
trt4
trt5

animal1
animal2
animal3
animal4
animal5



+



e11(4)
e21(1)
e31(3)
e41(2)
e51(5)
e12(2)
e22(4)
e32(1)
e42(5)
e52(3)
e13(1)
e23(3)
e33(5)
e43(4)
e53(2)
e14(5)
e24(2)
e34(4)
e44(3)
e54(1)
e15(3)
e25(5)
e35(2)
e45(1)
e55(4)


Note that we have 3 dependencies: period5, trt5, and animal5; because the 5 columns

corresponding to period sum to the �rst column (µ) and hence there are only 4 linearly

independent columns amongst the 5 columns for period; and the 5 columns corresponding

to treatment sum to the �rst column (µ) and hence there are only 4 linearly independent

columns amongst the 5 columns for treatment; and the 5 columns corrsponding to animal

sum to the �rst column (µ) and hence there are only 4 linearly independent columns

amongst the 5 columns for animals.

Y = Xb+ e

X ′Xb̃ = X ′Y

b̃ = (X ′X)−X ′Y

Note: Not too many d.f. error
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solution vector, b̃

µ

period 1

2

3

4

5

trt 1

2

3

4

5

animal 1

2

3

4

5



If we look at the �tted values for each observation we have:

µ+ a4 + r1 + C1 µ+ a1 + r1 + C2 µ+ a3 + r1 + C3 µ+ a2 + r1 + C4 µ+ a5 + r1 + C5

µ+ a2 + r2 + C1 µ+ a4 + r2 + C2 µ+ a1 + r2 + C3 µ+ a5 + r2 + C4 µ+ a3r2 + C5

µ+ a1 + r3 + C1 µ+ a3 + r3 + C2 µ+ a5 + r3 + C3 µ+ a4 + r3 + C4 µ+ a2 + r3 + C5

µ+ a5 + r4 + C1 µ+ a2 + r4 + C2 µ+ a4 + r4 + C3 µ+ a3 + r4 + C4 µ+ a1 + r4 + C5

µ+ a3 + r5 + C1 µ+ a5 + r5 + C2 µ+ a2 + r5 + C3 µ+ a1 + r5 + C4 µ+ a4 + r5 + C5



Let us sum the observations for animal 1

5µ+ 5a1 +
i=5∑
i=1

periodi +
j=5∑
j=1

trtj

Let us sum the observations for animal 2

5µ+ 5a2 +
i=5∑
i=1

periodi +
j=5∑
j=1

trtj
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Divide by 5, to bring back to a per unit basis

µ+ a1 +
1

5

i=5∑
i=1

periodi +
1

5

j=5∑
j=1

trtj

−

µ+ a2 +
1

5

i=5∑
i=1

periodi +
1

5

j=5∑
j=1

trtj



Note that the mean, row and column coe�cients cancel out one another, so that we are

left with a1 − a2 . => a1 - a2 is estimable

Partition RDSSm

into SSp, R (p | µ, trt, a) 4

SStrt, R (trt | µ, p, a) 4

SSa, R (a | µ, p, trt) 4

Construct the k' matrices for the contrasts for each of the e�ects (row, column, treat-

ment; or animal, treatment, period) for the Latin square. Construct the appropriate

CONTRAST statements for SAS GLM and use them to compute the Sums of Squares for

each of the e�ects; verifying that you obtain the same Sums of Squares as those given in

the ANOVA table in these notes and in the ANOVA output from SAS.

Let us do the same thing for treatments as we did for animals, i.e. start from the

various �tted values.

Ŷ113 = µ+ p̃1 + ˜trt1 + ã3

Ŷ215 = µ+ p̃2 + ˜trt1 + ã5

Ŷ312 = µ+ p̃3 + ˜trt1 + ã2

Ŷ411 = µ+ p̃4 + ˜trt1 + ã1

Ŷ514 = µ+ p̃5 + ˜trt1 + ã4

Let us sum the observations for treatment 1
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5µ+
i=5∑
i=1

periodi + 5trt1 +
k=5∑
k=1

ak

Dividing by 5 we get

µ+
1

5

i=5∑
i=1

periodi + trt1 +
1

5

k=5∑
k=1

ak

We should note in passing, that this corresponds to the Least Squares Mean for treat-

ment 1, the corresponding k' could be used to explcitly estimate the lsmean, in IML, or

usign the ESTIMATE statement in PROC GLM (and also PROC MIXED).

We can do the same for treatment 2, and then the di�erence (trt1 - trt2) will estimate

the di�erence between the 2 treatments, completely free of any e�ects of the mean, of

period and of animal; this is what we mean when we say 'over and above ..'.
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29.2 Analysis of Variance

Analysis of V ariance

Source df SS MS F − ratio

Total, N = 25 Y ′Y

TSS 441.05

Model, r(X) b̃′X ′Y 33.913 2288.5∗∗

SSR = 13 440.873

Mean, 1 Nȳ2 420.414 28369∗∗

C.F. 420.414

Model, after r(X)− 1 b̃′X ′Y −Nȳ2

the mean,SSRm = 12 20.459 1.705 115.04∗

R(p, trt, a | Mean)

p 4 0.170 0.0425 2.87n.s.s.

trt 4 0.432 0.1079 7.28∗

a 4 19.857 4.964 334.98∗∗

Error, N − r(X) Y ′Y − b̂′X ′Y 0.0148

SSE 12 0.1778

So we can estimate treatment di�erences as before.

29.3 Fixed or Random ?

See STD Ch. 9.14, Page 239

Because of the particular (balanced) nature of the Latin Square whether the factors are

�xed or random is not usually a complicating factor in our tests of signi�cance; either way

we compute the various degrees of freedom, Sums of Squares etc in the same manner. Note

however, that whilst the estimates of the di�erences between treatments and the standard

errors of such estimates are correct from GLM, the standard errors of the Least squares

means (so-called sem's) ARE INCORRECT. If one or more of the e�ects in the model are

random one should use PROC MIXED.
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29.4 Analysis using SAS/GLM and MIXED

data latin1;

input a p t y;

cards;

4 1 5 4.50

1 2 5 2.05

3 3 5 4.31

2 4 5 3.85

5 5 5 4.74

2 1 4 4.00

4 2 4 4.75

1 3 4 2.30

5 4 4 4.73

3 5 4 4.74

1 1 3 2.69

3 2 3 4.82

5 3 3 4.84

4 4 3 5.01

2 5 3 4.14

5 1 2 4.50

2 2 2 3.90

4 3 2 4.98

3 4 2 4.61

1 5 2 2.70

3 1 1 4.54

5 2 1 4.54

2 3 1 4.00

1 4 1 2.34

4 5 1 4.94

;

proc glm data=latin1;

classes a p t;

model y = a p t;

estimate 't1-t2' t 1 -1 0 0 0;

estimate 't1-t3' t 1 0 -1 0 0;

estimate 't1-t4' t 1 0 0 -1 0;

estimate 't1-t5' t 1 0 0 0 -1;

lsmeans t/stderr pdiff adjust=bon;

run;

proc mixed data=latin1;
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classes a p t;

model y = p t;

random a;

estimate 't1-t2' t 1 -1 0 0 0;

estimate 't1-t3' t 1 0 -1 0 0;

estimate 't1-t4' t 1 0 0 -1 0;

estimate 't1-t5' t 1 0 0 0 -1;

lsmeans t/pdiff adjust=scheffe;

run;

quit;

29.5 Gains in e�ciency

Gains in e�ciency relative to a randomized complete block design, STD, Ch 9.13, P237.

First of all compute what the MSE (RCB) would have been:

MSE (RCB) =
fcMSC + (ft + fe)MSE

fc + ft + fe

Then compute the relative e�ciency RE (LS to RCB) =

(f1 + 1)(f2 + 3)MSE(RCB)

f2 + 1)(f1 + 3)MSE(LS)

where f1 = d.f. error in L.S. and f2 = d.f. error in RCB

N.B. in a randomized complete block design we would have more degrees of freedom

for the error and therefore more powerful test.

Example of a Latin Square

e.g. from P224 Ch. 9.11 Latin Square, wheat yields, 4 variates

1 2 3 4

1 C = 10.5 D = 77 B = 12.0 A = 13.2
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2 B = 11.1 A = 12.0 C = 10.3 D = 7.5

3 D = 5.8 C = 12.2 A = 11.2 B = 13.7

4 A = 11.6 B = 12.3 D = 5.9 C = 10.2

Reverse, à la animals

Period

1 2 3 4

Animal

A 4 = 11.6 2 = 12.0 3 = 11.2 1 = 13.2

Treatment B 2 = 11.1 4 = 12.3 1 = 12.0 3 = 13.7

C 1 = 10.5 3 = 12.2 2 = 10.3 4 = 10.2

D 3 = 5.8 1 = 7.7 4 = 5.9 2 = 7.5

Rows, Columns and Treatments are independent of one another.

Type I and III Sums of Squares are equal, because it is a "balanced" design.

Unbalanced: imagine that we have a missing cell

Latin Square No. 2, 1 observation missing

Row 4, Column 1, Treatment Animal 1 GONE (Value 11.6)

Now in (X'X)− rows, Columns & Animals (Treatment) are no longer independent

Type I & III SS are di�erent, the Type III marginal sums of squares do not add to

RDSSm!
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30 Covariance

STD : Ch 17 P429

Analysis of Covariance is the combination of Regression parameters and Fixed, Clas-

si�cation e�ects in the same Analysis of Variance model. It is exceedingly simple; simply

combine regression and classi�cation factors in the same model.

For example, consider the case that we have 4 diets and we are interested in testing

their e�ects on the growth rate of young heifers. We could randomly split the group of

heifers into 4 groups and feed them each one of the diets, measuring their weight at the

start and at the end of the trial period. Our analysis would be of the weight gain during the

period of treatment. This analysis would be quite valid. However, we might recognise that

the heifers were not all of exactly the same weight at the start of the experiment and we

might consider that those which were larger/heavier at the start would have a propensity

to grow faster, and hence be heavier. If we ignore this factor in our analysis then the

random allocation to treatments will ensure that our analysis is unbiased, but it will have

a slightly larger sampling variance (and error variance) than if we can/could correct for

these di�erences between the animals. We can correct for the e�ect of the weight at the

start of the trial period by including initial weight as a covariate (regression parameter) in

our model.

Then the linear model would be

Yij = µ+ trti + b1Xij + eij

where Yij = the weight gain for the jth heifer on the ith treatment

µ = the e�ect of the overall mean

trti = the e�ect of the ith treatment

b1 = the regression of weight gain on initial weight

Xij = the initial weight for the jth heifer on the ith treatment

eij = the random residual error associated with the jth heifer

on the ith treatment

254



Another example would be that from STD, Ch 17.4, Page 435. An experiment was con-

ducted to compare 11 varieties of lima beans for ascorbic acid content, using a Randomised

Complete Block design, with 5 blocks, and adding stage of maturity as a covariate.

30.1 Linear model

Yij = µ+ vari + blkj + b1Xij + eij

where Yij = the ascorbic acid content for the ith variety of lima bean

in the jth block

µ = the e�ect of the overall mean

vari = the e�ect of the ith variety

blkj = the e�ect of the jth block

b1 = the regression of ascorbic acid content on stage of maturity

Xij = the stage of maturity for the ith variety on the jth block

eij = the random residual error associated with the ith variety

on the jth block

30.2 Matrix Equations

Y11
Y12
.
.

Y15
Y21
.
.
.

Y25
.
.

Y111
.
.

Y115


=



µ v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 blk1 blk2 blk3 blk4 blk5 X
1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 34.0
1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 33.4
.
.
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 36.1
1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 39.6
.
.
.
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 20.6
.
.
1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 30.8
.
.
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 43.8





µ
v1
v2
v3
v4
v5
v6
v7
v8
v9
v10
v11
blk1
blk2
blk3
blk4
blk5
b1


+



e11
e12
.
.

e15
e21
.
.
.

e25
.
.

e111
.
.

e115





30.3 Analysis of Variance

Source df SS MS F − ratio

Total, N = 55 Y ′Y

TSS 496801.1

Model, r(X) b̃′X ′Y 30912.4 547.278∗∗∗

SSR = 16 494598.23

Mean, 1 Nȳ2 434872.15 7699.05∗∗∗

C.F. 434872.15

Model, after r(X)− 1 b̃′X ′Y −Nȳ2

the mean, SSRm = 15 59726.077 3981.7 70.49∗∗∗

R(var, blk,mature | Mean)

var (v − 1) 7454.9 745.5 13.20∗∗∗

R(var | µ, blk,mature) = 10

blk (b− 1) 755.2 188.8 3.34∗

R(blk | µ, var,mature) = 4

mature 1 3742.3 3742.3 66.25∗∗∗

R(mature | µ, var, blk) = 1

Error, N − r(X) Y ′Y − b̂′X ′Y 56.484

Residual 55− 16 2202.87

30.4 Analysis using SAS

USING SAS/IML

proc iml;

reset print;

/* Analysis of Covariance, from STD, P435 */
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/* mu varieties block covariate */

x = {1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 34.0,

1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 33.4,

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 34.7,

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 38.9,

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 36.1,

1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 39.6,

1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 39.8,

1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 51.2,

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 52.0,

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 56.2,

1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 31.7,

1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 30.1,

1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 33.8,

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 39.6,

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 47.8,

1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 37.7,

1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 38.2,

1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 40.3,

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 39.4,

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 41.3,

1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 24.9,

1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 24.0,

1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 24.9,

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 23.5,

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 25.1,

1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 30.3,

1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 29.1,

1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 31.7,

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 28.3,

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 34.2,

1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 32.7,

1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 33.8,

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 34.8,

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 35.4,

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 37.8,

1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 34.5,

1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 31.5,

1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 31.1,

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 36.1,

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 38.5,

1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 31.4,

1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 30.5,
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1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 34.6,

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 30.9,

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 36.8,

1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 21.2,

1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 25.3,

1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 23.5,

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 24.8,

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 24.6,

1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 30.8,

1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 26.4,

1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 33.2,

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 33.5,

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 43.8};

y = {93.0,

94.8,

91.7,

80.8,

80.2,

47.3,

51.5,

33.3,

27.2,

20.6,

81.4,

109.0,

71.6,

57.5,

30.1,

66.9,

74.1,

64.7,

69.3,

63.2,

119.5,

128.5,

125.6,

129.0,

126.2,

106.6,

111.4,

99.0,

126.1,
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95.6,

106.1,

107.2,

97.5,

86.0,

88.8,

61.6,

83.4,

93.9,

69.0,

46.9,

80.5,

106.5,

76.7,

91.8,

68.2,

149.2,

151.6,

170.1,

155.2,

146.1,

78.7,

116.9,

71.8,

70.3,

40.9};

xtx = x` * x;

xty = x` * y;

invxtx = ginv(xtx);

bhat = invxtx * xty;

tss = y` * y;

sumy = sum(y);

nobs = nrow(x);

cf = sumy * sumy/nobs;

ssr = bhat` * xty;

ssrm = ssr - cf;

rx = 16;

sse = tss - ssr;

msr = ssr/rx;

msrm = ssrm/(rx-1);

mse = sse/(nobs-rx);
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fm = cf/mse;

fr = msr/mse;

frm = msrm/mse;

/* k` for varieties */

kp = { 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,

0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0,

0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0,

0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0,

0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0,

0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0,

0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0,

0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0,

0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0,

0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0};

k = kp`;

kb = k` * bhat;

kgk = k` * invxtx * k;

invkgk = inv(kgk);

ssv = kb` * invkgk * kb;

df = nrow(kp);

msv = ssv/df;

fv = msv/mse;

/* k` for blocks */

kp = { 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0,

0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 0,

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0,

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0};

k = kp`;

kb = k` * bhat;

kgk = k` * invxtx * k;

invkgk = inv(kgk);

ssb = kb` * invkgk * kb;

df = nrow(kp);

msb = ssb/df;

fb = msb/mse;

/* k` for covariate */

kp = { 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1};

k = kp`;

kb = k` * bhat;

kgk = k` * invxtx * k;
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invkgk = inv(kgk);

ssc = kb` * invkgk * kb;

df = nrow(kp);

msc = ssc/df;

fc = msc/mse;

sv = k` * invxtx * k * mse;

se = sqrt(sv);

/* k` for SSRm, Varieties + Block + Covariate */

kp = { 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,

0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0,

0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0,

0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0,

0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0,

0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0,

0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0,

0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0,

0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0,

0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0,

0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0,

0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 0,

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0,

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1};

/* k` for a fitted value, variety 1, block 1,

covariate value = 34.0 */

kp = {1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 34.0};

k = kp`;

kb = k` * bhat;

sv = k` * invxtx * k * mse;

se = sqrt(sv);

/* k` for an estimated value, variety 1, block 1,

covariate value = average

maturity (ie 33.9873) */

kp = {1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 33.9873};

k = kp`;

kb = k` * bhat;

sv = k` * invxtx * k * mse;

se = sqrt(sv);
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/* k` for an estimated value, variety 1, average over blocks,

covariate value = average maturity (ie 33.9873),

should correspond to the LSMean for variety 1 */

kp = {1 1 0 0 0 0 0 0 0 0 0 0 .2 .2 .2 .2 .2 33.9873};

k = kp`;

kb = k` * bhat;

sv = k` * invxtx * k * mse;

se = sqrt(sv);

quit;

USING SAS/PROC GLM

data ancova;

input var block mature ascorb;

cards;

1 1 34.0 93.0

1 2 33.4 94.8

1 3 34.7 91.7

1 4 38.9 80.8

1 5 36.1 80.2

2 1 39.6 47.3

2 2 39.8 51.5

2 3 51.2 33.3

2 4 52.0 27.2

2 5 56.2 20.6

3 1 31.7 81.4

3 2 30.1 109.0

3 3 33.8 71.6

3 4 39.6 57.5

3 5 47.8 30.1

4 1 37.7 66.9

4 2 38.2 74.1

4 3 40.3 64.7

4 4 39.4 69.3

4 5 41.3 63.2

5 1 24.9 119.5

5 2 24.0 128.5

5 3 24.9 125.6

5 4 23.5 129.0

5 5 25.1 126.2

6 1 30.3 106.6
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6 2 29.1 111.4

6 3 31.7 99.0

6 4 28.3 126.1

6 5 34.2 95.6

7 1 32.7 106.1

7 2 33.8 107.2

7 3 34.8 97.5

7 4 35.4 86.0

7 5 37.8 88.8

8 1 34.5 61.6

8 2 31.5 83.4

8 3 31.1 93.9

8 4 36.1 69.0

8 5 38.5 46.9

9 1 31.4 80.5

9 2 30.5 106.5

9 3 34.6 76.7

9 4 30.9 91.8

9 5 36.8 68.2

10 1 21.2 149.2

10 2 25.3 151.6

10 3 23.5 170.1

10 4 24.8 155.2

10 5 24.6 146.1

11 1 30.8 78.7

11 2 26.4 116.9

11 3 33.2 71.8

11 4 33.5 70.3

11 5 43.8 40.9

;

proc means data=ancova;

var ascorb mature;

run;

proc glm data=ancova;

class var block;

model ascorb = var block mature/XPX I SOLUTION;

estimate ' b mature' mature 1;

/* fitted value for observation 1: var 1, block 1, maturity = 34 */

estimate 'v1, block1, mature=93' intercept 1

var 1 0 0 0 0 0 0 0 0 0 0 block 1 0 0 0 0 mature 34.0;

/* estimated value for var1, block 1, at average maturity = 33.9873 */
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estimate 'v1, block1, mature=av (33.9873)' intercept 1

var 1 0 0 0 0 0 0 0 0 0 0 block 1 0 0 0 0 mature 33.9873;

/* estimated value for var1, average over blocks,

at average maturity = 33.9873 */

estimate 'Own calc of lsmean for var 1' intercept 1

var 1 0 0 0 0 0 0 0 0 0 0 block .2 .2 .2 .2 .2 mature 33.9873;

/* estimated value for var2, average over blocks,

at average maturity = 33.9873 */

estimate 'Own calc of lsmean for var 2' intercept 1

var 0 1 0 0 0 0 0 0 0 0 0 block .2 .2 .2 .2 .2 mature 33.9873;

/* estimated value for var3, average over blocks,

at average maturity = 33.9873 */

estimate 'Own calc of lsmean for var 3' intercept 1

var 0 0 1 0 0 0 0 0 0 0 0 block .2 .2 .2 .2 .2 mature 33.9873;

/* lsmeans calculated for average maturity */

lsmeans var block/stderr pdiff adjust=scheffe;

/* lsmeans calculated, AT a maturity of 34.0 */

lsmeans var block/stderr pdiff adjust=scheffe at mature=34.0;

/* estimated value for var1, average over blocks,

at maturity = 34.0 */

estimate 'v1, average over blcoks, mature=34.0' intercept 1

var 1 0 0 0 0 0 0 0 0 0 0 block .2 .2 .2 .2 .2 mature 34.0;

run;

quit;

30.5 Least Squares Means

What will be the Least Squares Means for such a model including a covariate? SAS sets

the covariate (X) to the average value.

What would happen if we have a covariate �tted as a linear and as a quadratic e�ect?
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31 Split Plot

STD Ch 16 P400; SAS System for Mixed Models Ch 2

We have 4 blocks and 4 treatments

A4 A1 A2 A3
Block 1

A2 A1 A4 A3
Block 2

A2 A1 A4 A3
Block 3

A3 A4 A2 A1
Block 4

The basic arrangement, so far, is that of a Randomised Complete Block (RCB) exper-

iment, the four treatments (Factor A, 4 levels) once and only once in each block. We then

further sub-divide each A into 4 and apply b1, b2, b3, or b4 randomly assigned. Thus we

now have
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A4 A1 A2 A3

b3 b2

b1 b4

b2 b4

b1 b3

b1 b2

b3 b4

b2 b1

b4 b3

Block 1

A2 A1 A4 A3

b1 b2

b4 b3

b2 b3

b4 b1

b1 b4

b2 b3

b3 b1

b4 b2

Block 2

A2 A1 A4 A3

b3 b2

b4 b1

b4 b2

b1 b3

b4 b1

b2 b3

b2 b3

b1 b4

Block 3

A3 A4 A2 A1

b2 b4

b3 b1

b1 b4

b2 b3

b1 b3

b2 b4

b2 b1

b4 b3

Block 4

Uses

1. Use when we have to apply larger amounts (for factor A).

2. When we later add an additional factor (b).

3. If larger di�erences are to be expected among the a's.

4. If greater precision is required for some factors (b).
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31.1 Linear Model

What is the linear model for this analysis? Probably the easiest way to build up the model

is, in my opinion, to follow the experimental design. What did we start with? Well, we

started with a Randomized Complete Block (RCB) experiment. Thus, for this type of

design the model would be:

Yij = µ+ blocki + Aj + eij

What is this error/residual term eij? Well, after STD Table 9.8, this error is composed

of the interaction between Block and Factor A + the 'real' residual variation from plot to

plot (which plots are nested within block, and also within Factor A, and also within the

block*A interaction). However, with only 1 measurement per plot we CANNOT separate

the interaction from the residual, hence it is all 'lumped' together into the 'Error' term,

but we could write the model as:

Yij = µ+ blocki + Aj + block ∗ Aij + plot(block ∗ A)ij + eij

although we would not be able to separate the block ∗Aij and plot(block ∗A)ij and eij

e�ects. However, the addition of the sub-plots and the Factor B e�ect means that we do

end up with more than 1 measurement per plot; thus we can extend the model by adding

the Bk e�ects and the interaction between Factor A and Factor B, thus:

Yijk = µ+ blocki + Aj + block ∗ Aij +Bk + A ∗Bjk + eijk

Note that we still have only 1 plot (experimental unit for A and block) for each block*A

combination. Therefore we shall not be able to separate the block*A interaction from the

plot variability. Thus what is labelled as block*A is synonymous with plot(block A) and

this will be the appropriate error term to use to test the signi�cance of block and Factor

A.

Thus it would be most sensible, convenient and least confusing to write

Yijk = µ+ blocki + Aj + plot(block ∗ A)ij +Bk + A ∗Bjk + eijk
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However, that is not the way that it is normally written, so one just has to learn to

make the connection, and hence work out that the block ∗ Aij term is in fact the correct

error term for the main-plot e�ect (A) and the block e�ect!

Analysis

d.f. M.S. F ratio

Mean 1

Blocks 3 MSBlock MSBlock/MSA∗Block

Factor A 3 MSA MSA/MSA∗Block

Error a, ≡ block * A 9 MSA∗Block MSA∗Block/MSE

≡ plot(block*A)

Factor B 3 MSB MSB/MSE

A * B 9 MSA∗B MSA∗B/MSE

Residual, ≡ Error b 36

Total 64 obs

31.2 SAS/PROC GLM Model

proc glm;

classes blocks A B plot;

model Y = blocks A plot(blocks*A) B A*B;

test h=blocks A e=plots(blocks*A);

random blocks plots(blocks*A);

estimate 'A1 vs A2' A 1 -1 0 0

block*A .25 -.25 0 0 .25 -.25 0 0 .25 -.25 0 0 .25 -.25 0 0

A*B .25 .25 .25 .25 -.25 -.25 -.25 -.25 0 0 0 0 0 0 0 0;

lsmeans 'Trt' A/stderr;

run;

31.3 SAS/PROC MIXED Model

proc mixed;

classes blocks A B plot;

model Y = A B A*B;

random blocks plot(blocks*A);

estimate 'A1 vs A2' A 1 -1 0 0;
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lsmeans 'Trt' A;

run;

Residual for Blocks & A = Errora M.S. (Block * A)

Residual for B = MSE

Residual for A*B = MSE

Ch 16 Table 16.2 P403

measured as s.e. of

di�erence

Two A means aj - aj′
√

2Ea

rb

Two B means bk - bk′
√

2Eb

ra

Two B means at ajbk - ajbk′
√

2Eb

r

same level of A

Two A means at

1. Same level of B aibj - akbj
√

2[(b−1)Eb+Ea]
rb

2. Di�erent levels of B aibj - akbl
√

2[(b−1)Eb+Ea]
rb

Note that the determination of the standard error of the di�erence is a non-trivial a�air,

and in almost all cases does not correspond to anything that SAS/GLM can directly and

automatically compute. This is not surprising since GLM is a �xed e�ects model, and

we have a model with both �xed and random e�ects, i.e. a mixed model, thus we should

use PROC MIXED. What di�erence does it make? Using PROC GLM we can obtain an

ANOVA, which with judicious use of the correct Mean Squares for each F-test can give us

valid F-tests. We will also, for the balanced case (no missing observations), obtain Least

squares means which are correct; BUT their standard errors will be incorrect!!! This is one
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of the major problems to using a �xed e�ects model to analyse mixed model data, and is

one of the reasons why PROC MIXED is to be preferred.
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Example from STD, P 406 Table 16.3

Treatment B

Seed lot A Blocks Check Ceresan M Panogen Agrox

Vicland 1 1 42.9 53.8 49.5 44.4

2 41.6 58.5 53.8 41.8

3 28.9 43.9 40.7 28.3

4 30.8 46.3 39.4 34.7

Vicland 2 1 53.3 57.6 59.8 64.1

2 69.6 69.6 65.8 57.4

3 45.5 42.4 41.4 44.1

4 35.1 51.9 45.4 51.6

Clinton 1 62.3 63.4 64.5 63.6

2 58.5 50.4 46.1 56.1

3 44.6 45.0 62.6 52.7

4 50.3 46.7 50.3 51.8

Branch 1 75.4 70.3 68.8 71.7

2 65.6 67.3 65.3 69.4

3 54.0 57.6 45.6 56.6

4 52.7 58.5 51.0 47.4

Linear Model

Yijk = µ+ seedi + blockj + seed ∗ blockij + trtk + seed ∗ trtik + eijk

Vicland 1∑
= 16µ+ 16s1 +

j=4∑
j=1

4bj +
j=4∑
j=1

4sb1j +
k=4∑
k=1

4tk +
k=4∑
k=1

4st1k

average

= µ+ s1 +
1

16

j=4∑
j=1

4bj +
1

16

j=4∑
j=1

4sb1j +
1

16

k=4∑
k=1

4tk +
1

16

k=4∑
k=1

4st1k
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= µ+ s1 +
1

4

j=4∑
j=1

bj +
1

4

j=4∑
j=1

sb1j +
1

4

k=4∑
k=1

tk +
1

4

k=4∑
k=1

st1k

Similarly for Vicland 2

∑
= 16µ+ 16s2 +

j=4∑
j=1

4bj +
j=4∑
j=1

4sb2j +
k=4∑
k=1

4tk +
k=4∑
k=1

4st2k

average

= µ+ s2 +
1

16

j=4∑
j=1

4bj +
1

16

j=4∑
j=1

4sb2j +
1

16

k=4∑
k=1

4tk +
1

16

k=4∑
k=1

4st2k

= µ+ s2 +
1

4

j=4∑
j=1

bj +
1

4

j=4∑
j=1

sb2j +
1

4

k=4∑
k=1

tk +
1

4

k=4∑
k=1

st2k

Thus the contrast between Vicland 1 and Vicland 2 is

= s1 − s2 +
1

4

j=4∑
j=1

sb1j −
1

4

j=4∑
j=1

sb2j +
1

4

k=4∑
k=1

st1k −
1

4

k=4∑
k=1

st2k
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31.4 Analysis of Variance

Source df SS MS F − ratio

. .

. .

Model, after r(X)− 1 b̃′X ′Y −Nȳ2

the mean,SSRm = 27 7066.192 261.711 12.89∗

R(block, seed, trt | Mean)

block (b− 1) 2842.9 947.6 947.6
68.70

R(block | µ, seed) = 3 = 13.795∗∗

seed (s− 1) 2848.0 949.3 949.3
68.70

R(seed | µ, block) = 3 = 13.818∗∗

block*seed (b− 1)(s− 1) 618.3 68.70 3.38∗∗

R(block ∗ seed | µ, block, seed) = 9

R(plot(block ∗ seed) | µ, block, seed)

trt (t− 1) 170.5 56.85 2.80n.s.s.

R(trt | µ, block, seed, block ∗ seed) = 3

trt*seed (t− 1)(s− 1) 586.4 65.16 3.21∗∗

R(trt ∗ seed | µ, block, = 9

seed, block ∗ seed, trt)

Error, N − r(X) Y ′Y − b̂′X ′Y 20.311

Residual 64− 28 731.203

31.5 Analysis using SAS

USING SAS/PROC GLM

data split;

input block seed $ trt $ plot yield;

cards;

1 vic1 check 1 42.9
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1 vic1 ceresan 1 53.8

1 vic1 panogen 1 49.5

1 vic1 agrox 1 44.4

2 vic1 check 2 41.6

2 vic1 ceresan 2 58.5

2 vic1 panogen 2 53.8

2 vic1 agrox 2 41.8

3 vic1 check 3 28.9

3 vic1 ceresan 3 43.9

3 vic1 panogen 3 40.7

3 vic1 agrox 3 28.3

4 vic1 check 4 30.8

4 vic1 ceresan 4 46.3

4 vic1 panogen 4 39.4

4 vic1 agrox 4 34.7

1 vic2 check 5 53.3

1 vic2 ceresan 5 57.6

1 vic2 panogen 5 59.8

1 vic2 agrox 5 64.1

2 vic2 check 6 69.6

2 vic2 ceresan 6 69.6

2 vic2 panogen 6 65.8

2 vic2 agrox 6 57.4

3 vic2 check 7 45.4

3 vic2 ceresan 7 42.4

3 vic2 panogen 7 41.4

3 vic2 agrox 7 44.1

4 vic2 check 8 35.1

4 vic2 ceresan 8 51.9

4 vic2 panogen 8 45.4

4 vic2 agrox 8 51.6

1 clinton check 9 62.3

1 clinton ceresan 9 63.4

1 clinton panogen 9 64.5

1 clinton agrox 9 63.6

2 clinton check 10 58.5

2 clinton ceresan 10 50.4

2 clinton panogen 10 46.1

2 clinton agrox 10 56.1

3 clinton check 11 44.6

3 clinton ceresan 11 45.0

3 clinton panogen 11 62.6

3 clinton agrox 11 52.7
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4 clinton check 12 50.3

4 clinton ceresan 12 46.7

4 clinton panogen 12 50.3

4 clinton agrox 12 51.8

1 branch check 13 75.4

1 branch ceresan 13 70.3

1 branch panogen 13 68.8

1 branch agrox 13 71.6

2 branch check 14 65.6

2 branch ceresan 14 67.3

2 branch panogen 14 65.3

2 branch agrox 14 69.4

3 branch check 15 54.0

3 branch ceresan 15 57.6

3 branch panogen 15 45.6

3 branch agrox 15 56.6

4 branch check 16 52.7

4 branch ceresan 16 58.5

4 branch panogen 16 51.0

4 branch agrox 16 47.4

;

proc glm;

classes block seed trt;

model yield = block seed block*seed trt trt*seed;

random block*seed;

test h=block seed e=block*seed;

lsmeans block seed/pdiff stderr e=block*seed;

lsmeans trt/pdiff stderr;

estimate 'vic1 - vic2' seed 1 -1 0 0;

run;

quit;

proc mixed;

classes block seed trt;

model yield = seed trt trt*seed;

random block block*seed;

lsmeans seed;

lsmeans trt;

lsmeans trt*seed;

estimate 'vic1 - vic2' seed 1 -1 0 0;

run;

quit;
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proc glm;

classes block seed trt plot;

model yield = block seed plot(block*seed) trt trt*seed;

random plot(block*seed)/test;

lsmeans block seed/pdiff stderr e=plot(block*seed);

lsmeans trt/pdiff stderr;

estimate 'vic1 - vic2' seed 1 -1 0 0;

run;

quit;

proc mixed;

classes block seed trt plot;

model yield = seed trt trt*seed;

random block plot(block*seed);

lsmeans seed;

lsmeans trt;

lsmeans trt*seed;

estimate 'vic1 - vic2' seed 1 -1 0 0;

run;

quit;

31.6 Expectation of Mean Squares

See STD Ch. 16.6, Page 422

If the e�ects we consider are �xed e�ects then we will be interested in the di�erences

between the various treatments. However, if the e�ects that we are considering are classed

as random e�ects then it is the variability in the population that we should be interested

in.

Some of the same considerations as were discussed in factorial designs also pertain to

Split Plot designs, namely the necessity of deciding which factor(s) are �xed and which

are random, and hence which Mean Squares should be tested against which.

If we look at the Least squares means produced by GLM and MIXED we see that they
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are the same. Note, this is only true for a completely balanced case, if we had unequal

numbers of observations and/or missing values then the GLM Least squares means would

not be correct. What about the standard errors? The table below shows the standard

errors of the various LSMeans produced by GLM and MIXED from the above-listed SAS

statements.

E�ect LSMean Standard Errors

GLM MIXED

Seeds

Branch 61.069 2.072 4.246

Clinton 54.306 2.072 4.246

Vic1 42.456 2.072 4.246

Vic2 53.406 2.072 4.246

Trt

Agrox 52.225 1.127 3.970

Ceresan 55.200 1.127 3.970

etc

vic1 - vc2 6.763 1.593 2.930

Note the LARGE di�erences! Using GLM you get underestimates of the standard errors

of both the least squares means of the treatments and varieties as well as di�erences; all

things being considered a thoroughly undesirable situation.
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32 Cross Over Design

32.1 General comments

In experiments where the animal/person/experimental unit remains on the treatment from

the start of the experiment until the end we can call this a continuous trial. Completely

Randomised Design (One-Way ANOVA), Two-Way ANOVA (Randomised Complete Block

Designs) and Factorial Models are all examples of continuous trials. In a cross-over (also

called a change-over trial), however, each animal will receive consecutively two or more

experimental treatments during the course of the experiment; this has similarities with

the Latin Square design. The period of comparison (C.P.) is therefore divided into a

number of sub-periods, which are sometimes refered to as C.P.1, C.P.2, etc. We could

think of the cross-over design as being a 2-by-2 Latin Square replicated several times

contemporaneously.

In a continuous trial, particularly with animals, it is common to place animals on a

standard diet/treatment, prior to their random allocation to the experimental treatments.

For example, one might have a standardisation period (S.P.) prior to the experiment; this

might be the preceeding lactation if one was carrying out a whole (complete) lactation

study with dairy cattle, or it might be the weight gain in the month preceeding the start of

the trial in a feeding trial. We take account of, or exploit, the high repeatability of lactation

milk yield from one lactation to another, or the relatively high corrrelation between suc-

cessive weights on a growth trial; all these with the objective of reducing the experimental

error, by covariance adjustment for the measures taken during the standardisation period.

Since, in the change-over design, two or more treatments are contrasted on the same ex-

perimental unit (e.g. animal, cow) the between-experimental unit (between cow) variation

does not enter into the experimental error. Thus, the covariance feature is not needed, and

the standardisation period (S.P.) plays a minor role, if any. However, in view of the value

of standardising experimental conditions it would seem eminently desirable to routinely

employ a short standardisation period, although such data will not (and cannot) be used

in the analysis. The basic cross-over design and analysis presented here assumes that there

are no carry-over e�ects, or equivalently, that they are removed by any 'washout' period

between the treatment periods, or that the length of time on the treatments is su�cient

to remove such residual e�ects. For a more advanced consideration of cross-over designs

(which include this simple two-factor crossover as well as Latin squares) where carry-over
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e�ects may be present see Ratkowsky et al; Cross-over experiments, Design, Analysis and

Application.

32.2 Description

The basic cross-over or simple reversal trial can be de�ned as one in which two treatments

(A and B) are studied, and each animal (cow, experimental unit) receives both treatments

in either of the sequences A, B or B, A. Thus, the basic pattern of the design is simply:

Basic Pattern

Comparison Sequence Group

period 1 2

1 A B

2 B A

where the letters in the table represent the treatments. The two periods should be the

same length (of time). The experimental units (animals, cow, people) available for the

experiment should be allocated to the two sequence groups at random. Usually the same

number of animals should be allocated to both groups, since this provides the maximum

information per experimental unit, and equivalently the smallest sampling variances. If an

odd number of experimental units (animals) are available, however, the numer of animals

allocated to one sequence can exceed by one the number allocated to the other sequence.

There is no need to discard animals (experimental units) just to obtain equal numbers in

the two sequence groups. Higher precision will be obtained than by leaving out the odd

animal, although it should be recognised that the information (in the statistical sense) per

unit is not quite maximum.

The cross-over design exploits the fact that in each time period we have both treatments;

hence comparisons between treatments are free of period e�ects. We e�ectively remove

the period e�ect from the comparison of treatments. Likewise, each animal receives both
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treatments, so the comparison of treatments is within animal, thereby removing between-

animal variation from the treatment di�erences.

32.3 Linear Model

Linear model for dairy cow example

Yijhk = µ+ seqi + cowij + perk + trth + eijhk

where Yijhk = the performance during the kth period of the

jth cow in the ith group (i = 1,2; j = 1, 2, .., ni;

on the hth treatment, k = 1,2)

µ = the overall mean e�ect

seqi = the e�ect of the ith sequence group (i = 1,2)

cowij = the e�ect of the jth cow on the ith sequence

(j = 1, 2, .. , ni), cowij N(0, σ2
cow)

perk = the e�ect of the kth period (k = 1,2)

trth = the e�ect of the hth treatment (h = 1,2; being a function of i and k)

eijhk = the random error, eijhk N(0, σ2
e)

32.4 Parameters of the model

Parameters of the model are the mean (µ), the e�ect of the sequence group (seqi), the

variance amongst animals (experimental units) (σ2
cow ), the e�ect of periods (perk), the

e�ect of the treatment (trth), and the random residual variation (σ2
e ). We are considering

that periods are a �xed e�ect; it is possible to consider periods as a random e�ect.
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32.5 Matrix Equations



Y111

Y112

Y121

.

.

Y1n12

Y211

Y212

Y221

Y222

.

.

Y2n21

Y2n22


=



µ seq1 seq2 a11 . a1n1
a21 a22 . a2n2

p1 p2 trt1 trt2
1 1 0 1 . 0 0 0 . 0 1 0 1 0

1 1 0 1 . 0 0 0 . 0 0 1 0 1

.

1 1 0 0 . 1 0 0 . 0 1 0 1 0

1 1 0 0 . 1 0 0 . 0 0 1 0 1

1 0 1 0 . 0 1 0 . 0 1 0 1 0

1 0 1 0 . 0 1 0 . 0 0 1 0 1

1 0 1 0 . 0 0 1 . 0 1 0 1 0

1 0 1 0 . 0 0 1 . 0 0 1 0 1

.

1 0 1 0 . 0 0 0 . 1 1 0 1 0

1 0 1 0 . 0 0 0 . 1 0 1 0 1





µ

seq1
seq2

animal11
animal12

.

animal1n1
animal21
animal22

.

animal2n2
period1
period2
trt1
trt2


+



e111
e112
e121
.

.

e1n12

e211
e212
e221
.

.

e2n2



Y = Xb+ e

X ′Xb̃ = X ′Y

b̃ = (X ′X)−X ′Y

solution vector, b̃

=



µ

seq1

seq2

animal11

animal12

.

animal1n1

animal21

animal22

.

animal2n2

period1

period2

trt1

trt2


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32.6 Example data set

Period Trt Data

Sequence group 1

Cow 1 Cow 2 Cow 3 Cow 4

1 1 29.9 54.0 41.6 28.5

2 2 27.8 49.7 38.4 26.5

Sequence group 2

Cow 5 Cow 6 Cow 7 Cow 8 Cow 9

1 2 22.2 55.5 43.5 33.2 18.2

2 1 21.4 49.1 41.3 34.3 17.1

32.7 Derivation of CONTRASTS

Treatments: Consider the �tted values

Ŷ111 = µ̃+ ˜seq1 + ˜cow11 + ˜per1 + ˜trt1

- Ŷ112 = µ̃+ ˜seq1 + ˜cow11 + ˜per2 + ˜trt2

Ŷ111 − Ŷ112 = ( ˜per1 − ˜per2) + ( ˜trt1 − ˜trt2)

Ŷ211 = µ̃+ ˜seq2 + ˜cow21 + ˜per1 + ˜trt2

- Ŷ212 = µ̃+ ˜seq2 + ˜cow21 + ˜per2 + ˜trt1

Ŷ211 − Ŷ212 = ( ˜per1 − ˜per2) + ( ˜trt2 − ˜trt1)

Then (Ŷ111 − Ŷ112 − (Ŷ211 − Ŷ212)

= ( ˜per1 − ˜per2) + ( ˜trt1 − ˜trt2)

- ( ˜per1 − ˜per2) + ( ˜trt2 − ˜trt1)

= 2( ˜trt1 − ˜trt2)
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Thus we can see that 1
2
[(Ŷ111 − Ŷ112 − (Ŷ211 − Ŷ212] provides us with a CONTRAST

between the two treatments free of BOTH period e�ects and animal e�ects.

32.8 Analysis using SAS/MIXED

data cross;

input per trt seq cow my;

cards;

1 1 1 1 29.9

2 2 1 1 27.8

1 1 1 2 54.0

2 2 1 2 49.7

1 1 1 3 41.6

2 2 1 3 38.4

1 1 1 4 28.5

2 2 1 4 26.5

1 2 2 5 22.2

2 1 2 5 21.4

1 2 2 6 55.5

2 1 2 6 49.1

1 2 2 7 43.5

2 1 2 7 41.3

1 2 2 8 33.2

2 1 2 8 34.3

1 2 2 9 18.2

2 1 2 9 17.1

;

proc mixed;

classes per trt seq cow;

model my = seq trt per/dfm=kr;

random cow(seq);

lsmeans trt;

estimate 'trt 1-2' trt 1 -1;

run;

proc mixed;

classes per trt seq cow;

model my = seq trt per/dfm=kr;

run;

283



32.9 Parameter Estimates And Signi�cance

Covariance parameters

Cow(Seq) 171.19

Residual 2.4777

Model Fitting Information

Observations 18

-2Res. Log Likelihood 94.4

Akaike's Information Criterion 98.4

Schwarz's Bayesian Criterion 98.8

Tests of Fixed E�ects

Source NDF DDF Type III F Pr > F

Sequence 1 7 0.16 0.7054

Trt 1 7 0.47 0.5165

per 1 7 10.25 0.0150

trtA - trtB 0.510 ± 0.746

lsmeans

Trt A 35.57 ± 4.42

Trt B 35.06 ± 4.42

Sequence 1 37.050 ± 6.57

Sequence 2 33.580 ± 5.87

Note, that since sequence 2 has one more experimental unit (cow) than sequence 1 it

arrives at having a smaller sampling variance and standard error for the Least squares

mean. The standard errors for the two treatments are equal, due to the balance of the

design. If these data had been analysed using SAS PROC/GLM we would have obtained

essentially the same estimates of the Least squares means for the treatments, but the
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standard errors of these Least squares means would have been a factor of 10 times too

small!

32.10 Output from PROC MIXED, including animal e�ect

First Analysis, including animal e�ect

The Mixed Procedure

Model Information

Data Set WORK.CROSS

Dependent Variable my

Covariance Structure Variance Components

Estimation Method REML

Residual Variance Method Pro�le

Fixed E�ects SE Method Prasad-Rao-Jeske-Kackar-Harville

Degrees of Freedom Method Kenward-Roger

Class Level Information

Class Levels Values

per 2 1 2

trt 2 1 2

seq 2 1 2

cow 9 1 2 3 4 5 6 7 8 9

Dimensions

Covariance Parameters 2

Columns in X 7

Columns in Z 9

Subjects 1

Max Obs Per Subject 18

Observations Used 18

Observations Not Used 0

Total Observations 18
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Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 119.30777444

1 1 94.36117735 0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Estimate

cow(seq) 171.19

Residual 2.4777

Fit Statistics

-2 Res Log Likelihood 94.4

AIC (smaller is better) 98.4

AICC (smaller is better) 99.5

BIC (smaller is better) 98.8

Type 3 Tests of Fixed E�ects

E�ect Num DF Den DF F Value Pr > F

seq 1 7 0.16 0.7054

trt 1 7 0.47 0.5165

per 1 7 10.25 0.0150

Estimates

Label Estimate Standard Error DF t Value Pr > |t|

trt 1-2 0.5100 0.7466 7 0.68 0.5165
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Least Squares Means

E�ect trt seq Estimate Standard Error DF t Value Pr > |t|

trt 1 35.5700 4.4201 7.1 8.05 <.0001

trt 2 35.0600 4.4201 7.1 7.93 <.0001

seq 1 37.0500 6.5655 7 5.64 0.0008

seq 2 33.5800 5.8724 7 5.72 0.0007
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32.11 Output from PROC MIXED, omitting animal e�ect

Second Analysis, no animal e�ect

The Mixed Procedure

Model Information

Data Set WORK.CROSS

Dependent Variable my

Covariance Structure Diagonal

Estimation Method REML

Residual Variance Method Pro�le

Fixed E�ects SE Method Model-Based

Degrees of Freedom Method Residual

Class Level Information

Class Levels Values

per 2 1 2

trt 2 1 2

seq 2 1 2

cow 9 1 2 3 4 5 6 7 8 9

Dimensions

Covariance Parameters 1

Columns in X 7

Columns in Z 0

Subjects 1

Max Obs Per Subject 18

Observations Used 18

Observations Not Used 0

Total Observations 18

Covariance Parameter Estimates

Cov Parm Estimate

Residual 173.66
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Fit Statistics

-2 Res Log Likelihood 119.3

AIC (smaller is better) 121.3

AICC (smaller is better) 121.6

BIC (smaller is better) 121.9

Type 3 Tests of Fixed E�ects

E�ect Num DF Den DF F Value Pr > F

seq 1 14 0.31 0.5876

trt 1 14 0.01 0.9361

per 1 14 0.15 0.7079

32.12 Interpretation and comparison of Model 1 and 2

We have to �t the two models, with and without the random e�ect of animal (cow nested

within sequence) to test whether there is a statistically signi�cant e�ect of the random

e�ect (cow). How do we do this, test the signi�cance? As we know from previous work, we

can use the log likelihoods of the 2 models to test this: -2(Di�erence) has a χ2 distribution.

Log Likelihood comparison

(-2Res. Log Likelihood, model 2) 119.3

- (-2Res. Log Likelihood, model 1) 94.4

Di�erence 24.9

From our statistical tables we can see that, for 1 d.f. (since we have the one parameter

σ2
cow) the tabulated value (for a 5% probability level) is 3.84. Since our calculated χ2

exceeds the tabulated value we can safely reject the Null Hypothesis (that σ2
cow=0) and

accept the Alternative Hypothesis, that σ2
cow is ̸= 0; our best estimate of σ2

cow is 171.19.

Thus our use of the cross-over design and inclusion of the random e�ect of animal in our

model has been very e�ective.
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33 Repeated measurements

33.1 Background

� What are repeated measures and how should we analyse them?

� When we have more than 1 measure on each experimental unit;

- hence the importance of clearly understanding what is the experimental unit!

Analysis of repeated measures has some similarities to nested models; there is more

than one measurement on each experimental unit.

However, with nested models, we are assuming that the subsamples (conditional upon

coming from the given experimental unit) are independent of one another.

For repeated measures, we are usually assuming that this may well not be true, e.g.

that we may have several measurements over time on an experimental unit, and that the

further apart they are in time, the less correlated they will be.

Easiest to start by examining the design, layout and model where there is no repeated

measurement,

i.e. if there is only 1 observation per experimental unit,

what is the experimental unit, what would be your model?

then think of the repeated measurements as being a sub-level within the experimental

unit (subject/person/animal/whatever).

Examples

- 10 people, 5 randomly assigned to each of 2 diets (treatments)
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- person is the experimental unit

- suppose we recorded their weight at the start and then 8 weeks later at the end of

the experimental period.

- we can (should) compute ∆Wt (Weight change) as: Final Weight - Initial Weight

Then we have a simple One-way ANOVA, Completely Randomized Design,

∆Wtij = Yij = µ+Dieti + eij

- suppose however, that we are interested inHOW the weight changes over the 8 weeks;

so we decide to weight the people each week.

Now we have 9 weekly weight measurements; repeated measurements on the experi-

mental units (the people/subjects). Our initial design is still the same, the treatment was

applied to the experimental unit (person).

- we need to account for the e�ect of time (the 9 weekly measurements of weight),

the possibility that the e�ect of diet may have di�erent e�ects over time (i.e. a diet

by time interaction), and the fact that the residual errors may be correlated, since they

are measurements in the same experimental unit, and hence cannot be presumed to be

ncessarily independent.

33.2 Linear model

Thus we can extend our model:

Yijk = µ+ dieti + personij + timek + dieti ∗ timek + eijk

Note, at this stage we have not speci�ed the destribution of the eijk's, the variance-

covariance matrix of the random e�ects errors; we have to; our model is incomplete without!
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Plant growth

Consider that we have an experiment with 3 treatments, 12 plots / treatment.

We measure the average height of the crop growth in each plot 2 times per week

(Monday and Thursday).

We want to see if growth is di�erent for di�erent treatments.

Experimental unit? The plot, because it is the plot that receives the treatment.

If we start by just considering the model if we had simply recorded the height at the

end (or the �nal height - initial height), i.e. only 1 observation per plot, then we would

have, as per the previous example, a simple CRD:

Yij = µ+ trti + eij

Adding in the fact that we have repeated measurements, and that there is an e�ect of

time, and that there may be a treatment*time interaction, we obtain:

Yijk = µ+ trti + plotij + dayk + trti ∗ dayk + eijk

For both models:

- what is the appropriate variance-covariance structure of the eijk's?

1) Quite independent of one another?

2) All errors equally correlated, regardless of how far apart they are in time?

3) Errors further apart are likely less correlated?

Note, it is essential for repeated measures analyses using SAS proc mixed that the data

be sorted according to the experimental unit within which we have the repeated measures
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aand by the repeated measures factor within the experimental unit. What does this mean

in practice? Well it is advisable to ALWAYS sort your data just before running proc mixed,

and the proc sort procedure of SAS is the easiest and safest way to ensure this:

proc sort data=SASdatasetname nodupkey;

by diet person time;

run;

proc mixed data = SASdatasetname lognote;

class diet person time;

model y = diet time diet*time / dfm = kr;

random person(diet);

repeated time / type = ? subject = person(diet);

lsmeans diet*time / pdiff adjust = scheffe slice = time;

run;

We have the repeated measures on each person, so the person is the experimental unit.

Since each person is on only one diet, it therefore follows that person is nested within diet,

but cross classi�ed with time. This we are sorting the data by diet (treatment) and person

within diet (experimental unit within treatment)and then by time within each person.

What should type=? be? the possibilities are:

1) type = vc

2) type = cs

3) type = ar(1)

4) type = sp(pow)(time)

NOTE we are assuming that σ2
e is the same across time;
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that we have homogeneous variances.

If we do not then some possibilities are using csh and arh(1) heterogenous variance

options (see the SAS on-line documentation).

33.3 Specifying the covariance structure

In terms of modelling the variance-covariance structure it is a good idea to have some ideas

about the form of the relationships;

this can be from a theoretical basis and/or by plotting the data.

The Mark 1 ocular estimation device is still unparalleled as an analytical tool!

So, start by graphing things! Graph all the observations; graph them by experimental

units, use line graphs, etc.

33.4 Common covariance structures

There are 3 main covariance structures that are common for repeated measures:

1. Equal covariance amongst all observations on the same experimental unit; this is

called Compound Symmetry (CS).

2. The covariance amongst observations declines the further apart they are in time;

proportional to the 'time' distance apart that they are, = σ2ρw, where w = number of time

units apart that any two observations are; this is called Auto-Regressive(1), AR(1). Note,

it is assumed that the time intervals are all equal.

3. If the time measurements are not all equal then we can generalise AR(1) to a spatial

power model, SP(POW)(time).

Note that in all of this we are assuming that the variances are homogeneous over time,
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if they are not then we NEED to account for this. By this we mean that perhaps the

residual variance increases with time; for example as animals age and get bigger we often

�nd that the variance of weight increases, therefore if we were looking at bodyweight over

time (as the animal grows) we probably do need to allow for the variance to increase, i.e.

the variances would not be homogeneous, they would be heterogeneous.

Note also, that the above are not all the possibilities, there are many, depending upon

the type of models and possible covariance structures that are appropriate to the particular

research �eld (see the SAS PROC MIXED procedure and on-line documentation as well

as the SAS System for Mixed Models books, and others for more examples).

Let's consider an example.

I collaborated with a researcher at INRA in France looking at the e�ect of male canary

songs on the production of eggs from females (from the birds who listened to the songs).

This was a study about evolutionary biology.

There were 24 females, 12 were exposed to 'superior' male songs, 12 were exposed to

'inferior' male songs. This looks like a CRD, with 2 treatments, and 12 birds per treatment.

So far so good.

What was the response, the dependent variable?

We measured the egg weight and testosterone content of the eggs laid by each bird.

Each bird laid 1 egg per day, 5 to 7 eggs per bird.

We have to consider that the eggs were laid over the course of a week, the eggs laid

closer together in time might be more similar.

Also, there may be a change in the mean with day, so we have to consider the time(day)

factor,

and we have to consider that there might be a di�erent response (to time/days) between

the 2 treatments.

Before we have the repeated measurements, we can consider this as a CRD:
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Yij = µ+ trti + birdij + ϵij

Note, just as for our basic CRD the birdij and ϵij terms are confounded, since (at this

stage) there is only 1 measurement per bird; note that the subscripts ij are the same for

both bird and ϵ.

If we add the day (of lay) as our time e�ect we get

Yijk = µ+ trti + birdij + dayk + trti ∗ dayk + eijk

The covariance structures that we looked at were the Compound Symmetry (equal

covariance between eggs regardless of how many days apart they were laid), and the Au-

toregressive model (AR(1)), where the correlation between eggs declines the further apart

in time the eggs are laid.

We were also interested to see whether there were statistically signi�cant di�erences

amongst birds.

The initial hypothesis was that we expected the AR(1) model to best model the co-

variance amongst eggs, and we thought that there might be di�erences amongst birds, i.e.

σ2
bird > 0.

proc sort data=SASdatasetname nodupkey;

by trt bird day;

run;

/* First model */

proc mixed data = SASdatasetname lognote;

class trt bird day;

model y = trt day trt*day / dfm = kr;

random bird(trt);

repeated day / type = cs subject = bird(trt);

run;
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/* Second model */

proc mixed data = SASdatasetname lognote;

class trt bird day;

model y = trt day trt*day / dfm = kr;

random bird(trt);

repeated day / type = ar(1) subject = bird(trt);

run;

/* Third model, note no random effect, to compare

with vs without the effect of bird nested within trt */

proc mixed data = SASdatasetname lognote;

class trt bird day;

model y = trt day trt*day / dfm = kr;

repeated day / type = ar(1) subject = bird(trt);

run;
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33.5 Results

Table 25: Covariance structure

Covariance BIC

structure value

CS 138.7

AR(1) 109.1 <� Best

sp(pow) 111.8

Table 26: Random e�ects

Trait Correlation Female χ2

Egg Wt 0.60 30.0

Testosterone Conc 0.23 6.3
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