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1 Cross Over Design

1.1 General comments

In experiments where the animal/person/experimental unit remains on the treatment from

the start of the experiment until the end we can call this a continuous trial. Completely

Randomised Design (One-Way ANOVA), Two-Way ANOVA (Randomised Complete Block

Designs) and Factorial Models are all examples of continuous trials. In a cross-over (also called

a change-over trial), however, each animal will receive consecutively two or more experimental

treatments during the course of the experiment; this has similarities with the Latin Square

design. The period of comparison (C.P.) is therefore divided into a number of sub-periods,

which are sometimes refered to as C.P.1, C.P.2, etc. We could think of the cross-over design

as being a 2-by-2 Latin Square replicated several times contemporaneously.

In a continuous trial, particularly with animals, it is common to place animals on a standard

diet/treatment, prior to their random allocation to the experimental treatments. For example,

one might have a standardisation period (S.P.) prior to the experiment; this might be the

preceeding lactation if one was carrying out a whole (complete) lactation study with dairy

cattle, or it might be the weight gain in the month preceeding the start of the trial in a feeding

trial. We take account of, or exploit, the high repeatability of lactation milk yield from one

lactation to another, or the relatively high corrrelation between successive weights on a growth

trial; all these with the objective of reducing the experimental error, by covariance adjustment

for the measures taken during the standardisation period. Since, in the change-over design,

two or more treatments are contrasted on the same experimental unit (e.g. animal, cow) the

between-experimental unit (between cow) variation does not enter into the experimental error.

Thus, the covariance feature is not needed, and the standardisation period (S.P.) plays a minor

role, if any. However, in view of the value of standardising experimental conditions it would

seem eminently desirable to routinely employ a short standardisation period, although such

data will not (and cannot) be used in the analysis. The basic cross-over design and analysis

presented here assumes that there are no carry-over effects, or equivalently, that they are

removed by any ’washout’ period between the treatment periods, or that the length of time on
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the treatments is sufficient to remove such residual effects. For a more advanced consideration

of cross-over designs (which include this simple two-factor crossover as well as Latin squares)

where carry-over effects may be present see Ratkowsky et al; Cross-over experiments, Design,

Analysis and Application.

1.2 Description

The basic cross-over or simple reversal trial can be defined as one in which two treatments

(A and B) are studied, and each animal (cow, experimental unit) receives both treatments in

either of the sequences A, B or B, A. Thus, the basic pattern of the design is simply:

Basic Pattern

Comparison Sequence Group

period 1 2

1 A B

2 B A

where the letters in the table represent the treatments. The two periods should be the same

length (of time). The experimental units (animals, cow, people) available for the experiment

should be allocated to the two sequence groups at random. Usually the same number of

animals should be allocated to both groups, since this provides the maximum information

per experimental unit, and equivalently the smallest sampling variances. If an odd number

of experimental units (animals) are available, however, the numer of animals allocated to one

sequence can exceed by one the number allocated to the other sequence. There is no need to

discard animals (experimental units) just to obtain equal numbers in the two sequence groups.

Higher precision will be obtained than by leaving out the odd animal, although it should be

recognised that the information (in the statistical sense) per unit is not quite maximum.
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The cross-over design exploits the fact that in each time period we have both treatments;

hence comparisons between treatments are free of period effects. We effectively remove the

period effect from the comparison of treatments. Likewise, each animal receives both treat-

ments, so the comparison of treatments is within animal, thereby removing between-animal

variation from the treatment differences.

1.3 Linear Model

Linear model for dairy cow example

Yijk = µ + seqi + cowij + perk + trth + eijk

where Yijk = the performance during the kth period of the

jth cow in the ith group (i = 1,2; j = 1, 2, .., ni; k = 1,2)

µ = the overall mean effect

seqi = the effect of the ith sequence group (i = 1,2)

cowij = the effect of the jth cow on the ith sequence

(j = 1, 2, .. , ni), cowij N(0, σ2

cow)

perk = the effect of the kth period (k = 1,2), perk N(0, σ2

period)

trth = the effect of the hth treatment (h = 1,2; being a function of i and k)

eijk = the random error, eijk N(0, σ2

e)

1.4 Parameters of the model

Parameters of the model are the mean (µ), the effect of the sequence group (seqi), the variance

amongst animals (experimental units) (σ2

cow ), the variance amongst periods (σ2

per ), the effect

of the treatment (trth), and the random residual variation (σ2

e ). We are considering that

periods are a random effect and not a consistent difference that we wish to estimate. It is
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possible to consider periods as a fixed effect if they correspond to repeatable time periods

(perhaps months of the year, etc).

1.5 Matrix Equations
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µ seq1 seq2 a11 . a1n1
a21 a22 . a2n2

p1 p2 trt1 trt2

1 1 0 1 . 0 0 0 . 0 1 0 1 0

1 1 0 1 . 0 0 0 . 0 0 1 0 1

.
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Y = Xb + e

X ′Xb̃ = X ′Y

b̃ = (X ′X)−X ′Y

5



solution vector, b̃
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1.6 Example data set

Period Trt Data

Sequence group 1

Cow 1 Cow 2 Cow 3 Cow 4

1 1 29.9 54.0 41.6 28.5

2 2 27.8 49.7 38.4 26.5

Sequence group 2

Cow 5 Cow 6 Cow 7 Cow 8 Cow 9

1 2 22.2 55.5 43.5 33.2 18.2

2 1 21.4 49.1 41.3 34.3 17.1
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1.7 Derivation of CONTRASTS

Treatments: Consider the fitted values

Ŷ111 = µ̃ + ˜seq
1
+ ˜cow11 + ˜per

1
+ ˜trt1

- Ŷ112 = µ̃ + ˜seq
1
+ ˜cow11 + ˜per

2
+ ˜trt2

Ŷ111 − Ŷ112 = ( ˜per
1
− ˜per

2
) + ( ˜trt1 − ˜trt2)

Ŷ211 = µ̃ + ˜seq
2
+ ˜cow21 + ˜per

1
+ ˜trt2

- Ŷ212 = µ̃ + ˜seq
2
+ ˜cow21 + ˜per

2
+ ˜trt1

Ŷ211 − Ŷ212 = ( ˜per
1
− ˜per

2
) + ( ˜trt2 − ˜trt1)

Then (Ŷ111 − Ŷ112 − (Ŷ211 − Ŷ212

= ( ˜per
1
− ˜per

2
) + ( ˜trt2 − ˜trt1)

- ( ˜per
1
− ˜per

2
) + ( ˜trt2 − ˜trt1)

= 2( ˜trt1 − ˜trt2)

Thus we can see that 1

2
[(Ŷ111− Ŷ112− (Ŷ211− Ŷ212] provides us with a CONTRAST between

the two treatments free of BOTH period effects and animal effects.

1.8 Analysis using SAS/MIXED

data cross;

input per trt seq cow my;

cards;

1 1 1 1 29.9

2 2 1 1 27.8

1 1 1 2 54.0

2 2 1 2 49.7

1 1 1 3 41.6
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2 2 1 3 38.4

1 1 1 4 28.5

2 2 1 4 26.5

1 2 2 5 22.2

2 1 2 5 21.4

1 2 2 6 55.5

2 1 2 6 49.1

1 2 2 7 43.5

2 1 2 7 41.3

1 2 2 8 33.2

2 1 2 8 34.3

1 2 2 9 18.2

2 1 2 9 17.1

;

proc mixed;

classes per trt seq cow;

model my = seq trt;

random cow(seq) per;

lsmeans trt;

estimate ’trt 1-2’ trt 1 -1;

lsmeans seq;

run;

1.9 Parameter Estimates And Significance

Covariance parameters

Cow(Seq) 171.1866

period 2.5773

Residual 2.4777
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Model Fitting Information

Observations 18

Res. Log Likelihood -49.4708

Akaike’s Information Criterion -52.4708

Schwarz’s Bayesian Criterion -53.5329

-2 Res. Log Likelihood 98.9416

Tests of Fixed Effects

Source NDF DDF Type III F Pr > F

Sequence 1 7 0.16 0.7054

Trt 1 7 0.42 0.5372

trtA - trtB 0.4841 ± 0.7462

lsmeans

Trt A 35.557 ± 4.564

Trt B 35.073 ± 4.564

Sequence 1 37.050 ± 6.663

Sequence 2 33.580 ± 5.981

Note, that since sequence 2 has one more experimental unit (cow) than sequence 1 it arrives

at having a smaller sampling variance and standard error for the Least squares mean. The

standard errors for the two treatments are equal, due to the balance of the design. If these

data had been analysed using SAS PROC/GLM we would have obtained essentially the same

estimates of the Least squares means for the treatments, but the standard errors of these Least

squares means would have been a factor of 10 times too small!
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